
CEN

CWA 16926
WORKSHOP
July 2023
AGREEMENT

ICS 35.240.15; 35.200; 35.240.40
English version

Extensions for Financial Services (XFS) interface specification
Release 3.30
Clarifications for Device Class Interfaces

Revision 3.30.16
July 2023
This CEN Workshop Agreement has been drafted and approved by a Workshop of representatives of interested parties, the constitution of which is indicated in the foreword of this Workshop Agreement.

The formal process followed by the Workshop in the development of this Workshop Agreement has been endorsed by the National Members of CEN but neither the National Members of CEN nor the CEN Management Centre can be held accountable for the technical content of this CEN Workshop Agreement or possible conflicts with standards or legislation.

This CEN Workshop Agreement can in no way be held as being an official standard developed by CEN and its Members.

This CEN Workshop Agreement is publicly available as a reference document from the CEN Members National Standard Bodies.

CEN members are the national standards bodies of Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.

[image: image1.jpg]

EUROPEAN COMMITTEE FOR STANDARDIZATION

COMITÉ EUROPÉEN DE NORMALISATION

EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels

© 2023 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members.

Ref. No. CWA 16926:2015 E
Table of Contents

5Introduction

6Generic Clarifications

7Device Classes

7Application Programming Interface / Service Provider Interface

7Clarifications for Synchronous Functions

7Clarifications for Configuration Information

7Clarifications for Application Processes, Threads and Blocking Functions

10Clarifications for WFS_SYSE_HARDWARE_ERROR, WFS_SYSE_SOFTWARE_ERROR, WFS_SYSE_USER_ERROR and WFS_SYSE_FRAUD_ATTEMPT

11Clarifications for WFSOpen

11Clarifications for WFSAsyncOpen

11Clarifications for WFPOpen

12Clarifications for WFMOutputTraceData

12Clarifications for WFMCreateKey

12Clarifications for WFMDeleteKey

12Clarifications for WFMDeleteValue

12Clarifications for WFMOpenKey

13Clarifications for WFMQueryValue

13Clarifications for WFMSetValue

13Clarifications for XFSAPI.H

13Clarifications for XFSADMIN.H

13Clarifications for XFSCONF.H

14Clarifications for XFSSPI.H

14Printers and Scanners

14Clarifications for WFS_CMD_PTR_READ_FORM

15Identification Card Units

15Clarifications for WFS_CMD_IDC_CHIP_POWER

15Clarifications for WFS_CMD_IDC_EMVCLESS_CONFIGURE

15Clarifications for WFS_CMD_IDC_EMVCLESS_PERFORM_TRANSACTION

18Clarifications for WFS_CMD_IDC_EMVCLESS_ISSUERUPDATE

18Clarifications for WFS_EXEE_IDC_EMVCLESSREADSTATUS

18Clarifications for C - Header File

19Clarifications for 9.
Intelligent Contactless Card Sequence Diagrams

199.3 Card Removed Before Completion

20Cash Dispensers

20Clarifications for Legislative Note Handling Standards Support

20Clarifications for WFS_INF_CDM_STATUS

20Clarifications for WFS_INF_CDM_CAPABILITIES

21Clarifications for WFS_INF_CDM_CASH_UNIT_INFO

22Clarifications for WFS_INF_CDM_PRESENT_STATUS

22Clarifications for WFS_INF_CDM_GET_ITEM_INFO

23Clarifications for WFS_INF_CDM_GET_ALL_ITEMS_INFO

23Clarifications for WFS_CMD_CDM_DISPENSE

24Clarifications for WFS_CMD_CDM_PRESENT

24Clarifications for WFS_CMD_CDM_COUNT

24Clarifications for WFS_CMD_CDM_RETRACT

25Clarifications for WFS_CMD_CDM_CALIBRATE_CASH_UNIT

25Clarifications for WFS_CMD_CDM_GET_ALL_ITEMS_INFO

25Clarifications for WFS_CMD_CDM_RESET

25Clarifications for WFS_EXEE_CDM_INCOMPLETEDISPENSE

26Clarifications for WFS_EXEE_CDM_INPUT_P6

26Clarifications for C - Header File

27Personal Identification Number Keypads (PIN Pads)

27Clarifications for Section 3. References

27Clarifications for WFS_INF_PIN_CAPABILITIES

27Clarifications for WFS_INF_PIN_GET_LAYOUT

27Clarifications for WFS_CMD_PIN_GET_DATA

28Clarifications for WFS_CMD_PIN_CRYPT

28Clarifications for WFS_CMD_PIN_GET_PINBLOCK

28Clarifications for WFS_CMD_PIN_GET_PINBLOCK_EX

28Clarifications for WFS_INF_PIN_DEFINE_LAYOUT

28Clarifications for WFS_CMD_PIN_AUTHENTICATE

29Clarifications for WFS_CMD_PIN_IMPORT_RSA_ENCIPHERED_PKCS7_KEY_EX

29Clarifications for WFS_EXEE_PIN_LAYOUT

30Clarifications for C - Header File

30Clarifications for Luxemburg Protocol

30Clarifications for Luxemburg-specific Header File

31Check Reader/Scanner

32Depository Unit

33Text Terminal Unit

34Sensors and Indicators Units

35Vendor Dependent Mode

35Clarifications for WFS_CMD_VDM_ENTER_MODE_ACK

35Clarifications for WFS_SRVE_VDM_INTERFACE_ CHANGED

36Cameras

36Clarifications for WFS_INF_CAM_STATUS

37Alarms

38Card Embossing Unit

39Cash In Module

39Clarifications for Legislative Note Handling Standards Support

39Clarifications for WFS_INF_CIM_STATUS

39Clarifications for WFS_INF_CIM_CAPABILITIES

40Clarifications for WFS_INF_CIM_BANKNOTE_TYPES

40Clarifications for WFS_INF_CIM_CASH_UNIT_INFO

42Clarifications for WFS_INF_CIM_GET_P6_SIGNATURE

42Clarifications for WFS_CMD_CIM_GET_ITEM_INFO

43Clarifications for WFS_CMD_CIM_GET_ALL_ITEMS_INFO

43Clarifications for WFS_CMD_CIM_CASH_IN_START

44Clarifications for WFS_CMD_CIM_CASH_IN

45Clarifications for WFS_CMD_CIM_CASH_IN_ROLLBACK

46Clarifications for WFS_CMD_CIM_RETRACT

46Clarifications for WFS_CMD_CIM_OPEN_SHUTTER

47Clarifications for WFS_CMD_CIM_START_EXCHANGE

47Clarifications for WFS_CMD_CIM_RESET

48Clarifications for WFS_CMD_CIM_CONFIGURE_NOTETYPES

48Clarifications for WFS_CMD_CIM_REPLENISH

48Clarifications for WFS_CMD_CIM_DEPLETE

49Clarifications for WFS_CMD_CIM_SET_CASH_IN_LIMIT

50Clarifications for WFS_CMD_CIM_PRESENT_MEDIA

50Clarifications for WFS_SRVE_CIM_ITEMSTAKEN

50Clarifications for ATM Cash-In Transaction Flow - Application Guidelines

518.9 Multiple Bunches Returned During WFS_CMD_CIM_CASH_IN Refused Notes (Implicit Shutter Control and Implicit Present Control)

548.10 Multiple Bunches Returned During WFS_CMD_CIM_CASH_IN_ROLLBACK Multiple Rollback Notes (Implicit Shutter Control and Implicit Present Control)

568.11 Retracting Items When Multiple Bunches Are Returned During WFS_CMD_CIM_CASH_IN (Implicit Shutter Control and Implicit Present Control)

578.12 Multiple Bunches Returned During WFS_CMD_CIM_CASH_IN_ROLLBACK (Implicit Shutter Control and Implicit Present Control)

598.13 Retracting Items When Multiple Bunches Are Returned During WFS_CMD_CIM_CASH_IN (Implicit Shutter Control and Implicit Present Control)

608.14 Bill Recognition Error (WFS_CMD_CIM_PRESENT_MEDIA Command Supported)

618.16 Multiple Bunch Timeout Handling

61No Items Inserted

62First Bunch Not Taken

63Last Bunch Taken

64Clarifications for Mixed Media Cancellation by Customer

64Clarifications for Mixed Media Cancellation by Customer on Cash Part Only

64Clarifications for Mixed Media Multiple Refused Items

66Card Dispenser

67Bar Code Reader

67Clarifications for C - Header File

68Item Processing Module

68Clarifications for WFS_INF_IPM_STATUS

68Clarifications for WFS_INF_IPM_MEDIA_BIN_CAPABILITIES

68Clarifications for WFS_CMD_IPM_MEDIA_IN

68Clarifications for WFS_SRVE_IPM_MEDIATAKEN

Introduction

These release notes provide clarifications and explanations for the Device Class Interface Programmer’s References Revision 3.30. Rather than updating the Device Class Interface specifications each time a new clarification is required, CEN/ISSS established release notes should be developed that aggregates the clarifications and explanations. These release notes serve that purpose. The release notes will provide clarifications of problems reported to CEN/ISSS which do not require functional changes. When a Device Class Interface Programmer’s Reference is updated for functional changes then all clarifications contained in these release notes at the current revision level for that Device Class will be incorporated into the new revision.

The clarification will be incorporated into the appropriate section copied from the affected Device Class Interface Programmer’s Reference and be printed as bold and underlined.

Generic Clarifications

No clarifications available.

Device Classes

Application Programming Interface / Service Provider Interface

Class Name

API/SPI

Clarifications for Synchronous Functions
…

If a blocking operation is not completed immediately in a Windows 3.x system, the XFS Manager executes a Windows message loop on behalf of the calling thread, thereby keeping the Windows system running. See Section 4.12 for a more detailed discussion of process, threads and message loops. In Windows NT, tThe calling application thread is blocked on request completion. A thread may have only one blocking XFS call outstanding at any one time. See Section 4.12 for additional discussion of the management of synchronous functions, including replacement of the default message loop.
Clarifications for Configuration Information

…

These functions are used by Service Providers and applications to write and retrieve the configuration information for an XFS subsystem, which is stored in a hierarchical structure called the Windows Registry. The structure and the functions are based on the Win32/Win64 Registry architecture and API functions, and are implemented in Windows NT/98 and future versions of Windows using the Registry and the associated functions.
…

The local PC dependent configuration information is stored beneath the following Registry key. A pre-defined handle (WFS_CFG_HKEY_MACHINE_XFS_ROOT) can be used to access this key in the configuration functions defined in Section 8.

[image: image2.wmf]HKEY_LOCAL_MACHINE

XFS

SOFTWARE

User dependent configuration information is stored in the HKEY_USERS section of the Registry. Pre-defined handles (WFS_CFG_HKEY_USER_DEFAULT_XFS_ROOT and WFS_CFG_CURRENT_USER_XFS_ROOT) can be used to access these keys in the configuration functions defined in Section 8.
Clarifications for Application Processes, Threads and Blocking Functions
An application process contains one or more threads of execution. The XFS interface is designed to work in both the single-threaded versions of the Windows operating systems (Windows 3.1 and Windows for Workgroups) and in the multi-threaded versions of Windows (Windows NT and future versions of Windows). All references to threads in this document refer to actual threads in multi-threaded Windows environments. In single-threaded environments, “thread” is synonymous with “process.”

Within the XFS Manager, a blocking (synchronous) function is handled as follows:
The XFS Manager initiates the operation, and then enters a loop in which it dispatches any Windows messages (thus yielding the processor to other applications as necessary) and checks for the completion of the operation. When the operation completes, or WFSCancelBlockingCall is invoked, the blocking operation completes with an appropriate result.

1. The XFS Manager creates a transitory HWND on the calling thread to receive the completion message for the operation e.g. WFS_EXECUTE_COMPLETE.

2. The XFS Manager calls the Service Provider WFP API, passing the transitory HWND.

3. The XFS Manager waits for the completion message to be received. It does this by entering a loop equivalent to the following pseudo code, calling the current blocking hook (a Windows message dispatch routine) waiting for the completion message to be received from the Service Provider.

for(;;) {
/* flush messages for good user response */
for(;;) {
BlockingHook();
/* check for WFSCancelBlockingCall() */
if (operation_cancelled())
 break;
/* check to see if operation completed */
if(operation_completed())
 break; /* normal completion */
}

where the Default Blocking Hook is equivalent to:

BOOL DefaultBlockingHook(void) {
 MSG msg = {0};
 BOOL ret = GetMessage(&msg, NULL, 0, 0);
 if((int) ret != -1) {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 /* FALSE if we got a WM_QUIT message */
 return(ret);
}
4. On reception of the completion message, the XFS Manager exits the loop.

5. The XFS Manager destroys the transitory HWND.

6. The blocking operation completes. The blocking function return code is copied from the completion message lpWFSResult hResult field. If applicable, the lpWFSResult is also returned.

The thread, on which the blocking function has been called, is not permitted to issue any XFS calls other than the following two specific functions provided to assist the developer in this situation.

· WFSIsBlocking determines whether or not a blocking function is in progress.

· WFSCancelBlockingCall cancels a blocking function in progress.

Any other XFS function, called from a thread with a blocking function in progress, will fail with the error WFS_ERR_OP_IN_PROGRESS.

Developers must be aware that WFSIsBlocking cannot simply be called in a loop waiting for the blocking function to complete. The application must allow the message handler to return to allow control to return to the blocking hook. Otherwise, the blocking function will not complete.

When a Windows message is received for a thread for which a blocking operation is in progress, the thread is not permitted to issue any XFS calls during the processing of the message, other than the two specific functions provided to assist the programmer in this situation:

· WFSIsBlocking determines whether or not a blocking call is in progress.

· WFSCancelBlockingCall cancels a blocking call in progress.

Any other XFS function called when a blocking call is in progress fails with the error WFS_ERR_OP_IN_PROGRESS. This restriction applies to requests for both blocking and non-blocking operations.

Although this mechanism is sufficient for simple applications, it cannot support those applications which require more complex message processing while blocked for a synchronous calla blocking function is executing, such as processing messages relating to MDI (multiple document interface) events, accelerator key translations, and modeless dialogs. For such applications, the XFS API includes the function WFSSetBlockingHook, which allows the programmerdeveloper to define a special routine custom blocking hook which will be called instead of the default message dispatch routine blocking hook described above. This function gives an application the ability to execute its own routine at blocking time in place of the default routine. It is not intended as a mechanism for performing general application functions while blocked; it is still true that the only XFS functions that may be called from a blocking routine are WFSIsBlocking and WFSCancelBlockingCall. The asynchronous versions of the XFS functions must be used to allow an application to continue processing while an operation is in progress. Developers must be aware of their responsibility when replacing the default blocking hook. The developer must ensure:
· All messages are processed in the order received. If not, the potential exists for the Service Provider to be blamed for sending messages in the wrong order e.g. a WFS_EXECUTE_EVENT message after a WFS_EXECUTE_COMPLETE.
· All messages are processed. If not, the potential exists that the thread message queue will fill preventing other messages being added to the queue, including the Service Provider attempt to post the completion message being waited on.

The developer must be aware that replacing the default blocking hook impacts the process. The custom blocking hook will be called from every thread which makes use of XFS blocking functions.

This mechanism is provided to allow a Windows 3.x or Windows for Workgroups application to make blocking calls without blocking the rest of the system. Under Windows NT and future multi-threaded, preemptive versions of Windows, the default blocking action is to suspend the calling application's thread until the request completes. This is because the system is not blocked by a single application waiting for an operation to complete, and hence not calling PeekMessage or GetMessage, which are required in the non-preemptive systems in order to cause the application to yield control.

Therefore, if a single-threaded application is targeted at both single- and multi-threaded environments, and relies on this functionality, it should install a specific blocking hook by calling WFSSetBlockingHook, even if the default hook would suffice. This maximizes the portability of applications that depend on the blocking hook behavior. Programmers who are constrained to use blocking mode - for example, as part of an existing application which is being ported - should be aware of the semantics of blocking operations.

In the XFS implementation in a single-threaded environment, the blocking function operates as follows. When an application requests a blocking XFS API function, the XFS Manager initiates the requested function and then enters a loop which is equivalent to the following pseudo-code:

for(;;) {

/* flush messages for good user response */

DefaultBlockingHook();

/* check for WFSCancelBlockingCall() */

if(operation_cancelled())

break;

/* check to see if operation completed */

if(operation_complete())

break;

/* normal completion */

}

The DefaultBlockingHook routine is equivalent to:

BOOL DefaultBlockingHook(void) {

MSG msg;

BOOL ret;

/* Wait for the next message */

ret = GetMessage(&msg, NULL, 0, 0);

if((int) ret != -1) {

TranslateMessage(&msg);

DispatchMessage(&msg);

}

/* FALSE if we got a WM_QUIT message */

return(ret);

}

In a multi-threaded environment, the developer of a multi-threaded application must be aware that it is the responsibility of the application, not the XFS Manager, to synchronize access to a service by multiple threads. Failure to synchronize calls to a service leads to unpredictable results; for example, if two threads "simultaneously" issue WFSExecute requests to send data to the same service, there is no guarantee as to the order in which the data is sent. This is true in general; the application is responsible for coordinating access by multiple threads to any object (e.g. other forms of I/O, such as file I/O), using appropriate synchronization mechanisms. The XFS Manager can not, and will not, address these issues. The possible consequences of failing to observe these rules are beyond the scope of this specification.

In order to allow maximum flexibility in the design and implementation of applications, especially in multi-threaded environments, the concept of "application identity" can optionally be managed explicitly by the application developer using the concept of application handles. See Sections 4.5 and 4.8.2 for additional discussion of this concept.
Clarifications for WFS_SYSE_HARDWARE_ERROR, WFS_SYSE_SOFTWARE_ERROR, WFS_SYSE_USER_ERROR and WFS_SYSE_FRAUD_ATTEMPT
Field
Description

lpszLogicalName
Pointer to the logical service name of the service that generated the error

lpszPhysicalName
Pointer to the physical service name of the service that generated the error

lpszWorkstationName
Pointer to the name of the workstation in which the logical service name is defined (if any)

lpszAppID
Pointer to the application ID associated with the session that generated the error (if any)

dwAction
The action required to manage the error. Possible values are:

Value
Meaning

WFS_ERR_ACT_NOACTION
No action required or error was autorecovered.

WFS_ERR_ACT_RESET
Reset device to attempt recovery using WFS_CMD_XXX_RESET, but should not be used excessively. Intervention is not required although if repeated attempts are unsuccessful then WFS_ERR_ACT_HWMAINT may be reported.
WFS_ERR_ACT_SWERROR
A software error occurred. Contact software vendor.

WFS_ERR_ACT_CONFIG
A configuration error occurred. Check configuration.

WFS_ERR_ACT_HWCLEAR
Recovery is not possible. A manual intervention for clearing the device is required. This value is only used for hardware errors. This value is typically returned when a hardware error has occurred which requires banking personnel specific maintenance, e.g. ‘replace paper’, or ‘remove cards from retain bin’.

WFS_ERR_ACT_HWMAINT
Recovery is not possible. A technical maintenance intervention is required. This value is only used for hardware errors and fraud attempts. This value is typically returned when a hardware error or fraud attempt has occurred which requires field engineer specific maintenance activity. WFS_CMD_XXX_RESET may be used to attempt recovery after intervention, but should not be used excessively – Vendor Dependent Mode may be required to recover the device.

WFS_ERR_ACT_SUSPEND
Device will attempt auto recovery and will advise any further action required via a Device Status Event.

dwSize
The size in bytes of the following description

lpbDescription
Pointer to a vendor-specific description of the error.

Note:

The following table describes what dwAction may be returned for the various Hardware, Software, User Error and Fraud Attempt Events. The dwAction definitions above give guidance on what an application should do next when one of these events is received. Care should be taken to avoid calling WFS_CMD_XXX_RESET excessively without intervention, as this may lead to damage to the device or media contained in the device if for example media is jammed in the device:
	
	Generated on Hardware Event?
	Generated on Software Event?
	Generated on User Event?
	Generated on Fraud Event?

	_NOACTION
	Yes
	Yes
	Yes
	Yes

	_RESET
	Yes
	Yes
	Yes
	No

	_SWERROR
	No
	Yes
	No
	No

	_CONFIG
	Yes
	Yes
	No
	No

	_HWCLEAR
	Yes
	No
	No
	No

	_HWMAINT
	Yes
	No
	No
	Yes

	_SUSPEND
	No
	No
	Yes
	No

Clarifications for WFSOpen
Parameters
LPCSTR lpszLogicalName
Points to a null-terminated string containing the pre-defined logical name of a service. It is a high level name such as "SYSJOURNAL1", "PASSBOOKPTR3" or "CASHDISP02," that is used by the XFS Manager and the Service Provider solely as a key to obtain the specific configuration information they need.
…

LPCSTR lpszAppID
Points to a null-terminated string containing the application ID; the pointer may be NULL if the ID is not used. This ID may be used by services in a variety of ways; e.g. it is included in the SYSTEM_EVENT message for undeliverable events, to aid in finding system problems

Clarifications for WFSAsyncOpen
Parameters
LPCSTR lpszLogicalName
See WFSOpen.

…

LPCSTR lpszAppID
Points to a null-terminated string containing the application ID. See WFSOpen.
Clarifications for WFPOpen

Parameters

…

LPCSTR lpszLogicalName
Points to a null-terminated string containing the pre-defined logical name of a service. It is a high level name such as "SYSJOURNAL1," "PASSBOOKPTR3" or "ATM02," that is used by the XFS Manager and the Service Provider as a key to obtain the specific configuration
…

LPCSTR lpszAppID
Pointer to a null terminated string containing the application ID; the pointer may be NULL if the ID is not used.

Clarifications for WFMOutputTraceData
Parameters
LPCSTR lpszData
Pointer to a null-terminated string containing the trace data.

Clarifications for WFMCreateKey

…

Be aware that when the WFMCreateKey is used for the first time and the hKey parameter is set to WFS_CFG_HKEY_XFS_ROOT then the existing registry structure will be migrated from HKEY_CLASSES_ROOT to HKEY_LOCAL_MACHINE. If any of the other values WFS_CFG_HKEY_MACHINE_XFS_ROOT, or WFS_CFG_HKEY_USER_DEFAULT_XFS_ROOT or WFS_CFG_CURRENT_USER_XFS_ROOT If either of the new values WFS_CFG_MACHINE_XFS_ROOT or WFS_CFG_USER_DEFAULT_XFS_ROOT are used then no migration will take place for this process. The assumption is that any process using the new key values will be doing its own migration. The reason migration does not always take place is that some applications will require access to both the old and new key roots so that they can migrate their non-CEN keys and values.
WFS_CFG_HKEY_XFS_ROOT is defined in XFS 2.x as HKEY_CLASSES_ROOT\WOSA/XFS_ROOT.

…
Parameters

…

LPCSTR lpszSubKey
Pointer to a null-terminated string containing the name of the key to be created or opened.

Clarifications for WFMDeleteKey

Parameters

…

LPCSTR lpszSubKey
Pointer to a null-terminated string specifying the name of the key to be deleted.

Clarifications for WFMDeleteValue

Parameters

…

LPCSTR lpszValue
Pointer to a null-terminated string specifying the name of the value to be deleted.

Clarifications for WFMOpenKey
Parameters

…

LPCSTR lpszSubKey
Pointer to a null-terminated string containing the name of the key to be opened. If this parameter is NULL, or points to an empty string, the function opens another handle to the key identified by the hKey parameter (and does not close any previously opened handles).
Clarifications for WFMQueryValue
Parameters

…

LPCSTR lpszValueName
Pointer to a null-terminated string specifying the name of the value to be queried.

Clarifications for WFMSetValue

Parameters

…

LPCSTR lpszValueName
Pointer to a null-terminated string containing the name of the value being set. If a value with this name does not already exist in the specified key, it is added to the key.

LPCSTR lpszData
Pointer to a buffer containing the data (a null-terminated character string) to be stored with the specified value name.

Clarifications for XFSAPI.H

…

HRESULT extern WINAPI WFSOpen (LPCSTR lpszLogicalName, HAPP hApp, LPCSTR lpszAppID, DWORD dwTraceLevel, DWORD dwTimeOut, DWORD dwSrvcVersionsRequired, LPWFSVERSION lpSrvcVersion, LPWFSVERSION lpSPIVersion, LPHSERVICE lphService);

…
HRESULT extern WINAPI WFSAsyncOpen (LPCSTR lpszLogicalName, HAPP hApp, LPCSTR lpszAppID, DWORD dwTraceLevel, DWORD dwTimeOut, LPHSERVICE lphService, HWND hWnd, DWORD dwSrvcVersionsRequired, LPWFSVERSION lpSrvcVersion, LPWFSVERSION lpSPIVersion, LPREQUESTID lpRequestID);

Clarifications for XFSADMIN.H

…

HRESULT extern WINAPI WFMOutputTraceData (LPCSTR lpszData);

Clarifications for XFSCONF.H

…

/******* Value of hKey ***/

#define WFS_CFG_HKEY_XFS_ROOT ((HKEY)1)

#define WFS_CFG_HKEY_MACHINE_XFS_ROOT ((HKEY)2)

#define WFS_CFG_HKEY_USER_DEFAULT_XFS_ROOT ((HKEY)3)

#define WFS_CFG_CURRENT_USER_XFS_ROOT ((HKEY)4)

// The following values are added for backwards compatibility reasons

#define WFS_CFG_MACHINE_XFS_ROOT WFS_CFG_HKEY_MACHINE_XFS_ROOT

#define WFS_CFG_USER_DEFAULT_XFS_ROOT WFS_CFG_HKEY_USER_DEFAULT_XFS_ROOT

…

HRESULT extern WINAPI WFMCreateKey (HKEY hKey, LPCSTR lpszSubKey, PHKEY phkResult, LPDWORD lpdwDisposition);

HRESULT extern WINAPI WFMDeleteKey (HKEY hKey, LPCSTR lpszSubKey);

HRESULT extern WINAPI WFMDeleteValue (HKEY hKey, LPCSTR lpszValue);

…

HRESULT extern WINAPI WFMOpenKey (HKEY hKey, LPCSTR lpszSubKey, PHKEY phkResult);

HRESULT extern WINAPI WFMQueryValue (HKEY hKey, LPCSTR lpszValueName, LPSTR lpszData, LPDWORD lpcchData);

HRESULT extern WINAPI WFMSetValue (HKEY hKey, LPCSTR lpszValueName, LPSTR lpszData, DWORD cchData);

Clarifications for XFSSPI.H

HRESULT extern WINAPI WFPOpen (HSERVICE hService, LPCSTR lpszLogicalName, HAPP hApp, LPCSTR lpszAppID, DWORD dwTraceLevel, DWORD dwTimeOut, HWND hWnd, REQUESTID ReqID, HPROVIDER hProvider, DWORD dwSPIVersionsRequired, LPWFSVERSION lpSPIVersion, DWORD dwSrvcVersionsRequired, LPWFSVERSION lpSrvcVersion);
Printers and Scanners
Class Name

PTR
Clarifications for WFS_CMD_PTR_READ_FORM

Output Param
..

lpszFields
Pointer to a series of "<FieldName>=<FieldValue>" strings, where each string is null-terminated with the entire field string terminating with two null characters. If the field is an index field, then the syntax of the string is instead "<FieldName>[<index>]=<FieldValue>", where <index> specifies the zero-based element of the index field. An empty list may be indicated by either a NULL pointer or a pointer to two consecutive null characters.

lpszUNICODEFields
Pointer to a series of "<FieldName>=<FieldValue>" UNICODE strings, where each string is null-terminated with the entire field string terminating with two null characters. If the field is an index field, then the syntax of the string is instead "<FieldName>[<index>]=<FieldValue>", where <index> specifies the zero-based element of the index field. An empty list may be indicated by either a NULL pointer or a pointer to two consecutive null characters.

Identification Card Units

Class Name

IDC

Clarifications for WFS_CMD_IDC_CHIP_POWER
Description
This command handles the power actions that can be done on the chip.

For user chips, this command is only used after the chip has been contacted for the first time using the WFS_CMD_IDC_READ_RAW_DATA command. For contactless user chips, this command may be used to deactivate the contactless card communication.
…

Error Codes
In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated by this command:

Value
Meaning

WFS_ERR_IDC_CHIPPOWERNOTSUPP
The specified action is not supported by the hardware device.

WFS_ERR_IDC_MEDIAJAM
The card is jammed (only applies to contact user chips). Operator intervention is required.

WFS_ERR_IDC_NOMEDIA
There is no card inside the device (may not apply for contactless user chips).
Clarifications for WFS_CMD_IDC_EMVCLESS_CONFIGURE
Input Param
…

lppKeyData
…

wAPublicKeyAlgorithmIndicator
Specifies the algorithm used in the calculation of the CA Public Key checksum. A detailed description of secure hash algorithm values is given in EMV Book 2, Annex B3; see reference [2]. For example, if the EMV specification indicates the algorithm is ‘01’, the value of the algorithm is coded as 0x01.
lpCAPublicKeyExponent
Specifies the CA Public Key Exponent for the specific RID. This value is represented by the minimum number of bytes required. A detailed description of public key exponent values is given in EMV Book 2, Annex B2; see reference [2]. For example, representing value ‘216 + 1’ requires 3 bytes in hexadecimal (0x01, 0x00, 0x01), while value ‘3’ is coded as 0x03.
lpCAPublicKeyModulus
Specifies the CA Public Key Modulus for the specific RID.

lpbCAPublicKeyChecksum
Specifies the 20 byte checksum value for the CA Public Key.
Clarifications for WFS_CMD_IDC_EMVCLESS_PERFORM_TRANSACTION
Input Param
…
lpData
Supplies EMV data elements in a BER-TLV format required to perform a transaction.

The types of object that could be listed in the lpData are:

· Transaction Type (9C)

· Amount Authorized (9F02)

· Transaction Date (9A)*
· Transaction Time (9F21)*
· Transaction Currency Code (5F2A)

Individual payment systems could define further data elements.

Tags are not mandatory with this command and this value can be NULL.

Tags 9A and 9F21 could be managed internally by the reader. If tags are not supplied, tag values may be used from the configuration sent previously in the WFS_CMD_IDC_EMVCLESS_CONFIGURE command.
Output Param
..

wDataSource
 The flag is set according to whether the contactless chip transaction has been completed in a mag-stripe mode or an EMV mode.

Specifies the source of the card data as one of the following flags:

Value
Meaning

WFS_IDC_TRACK1
lpDataRead contains the chip returned data formatted in as track 1. mag This value is set after the contactless transaction has been completed with mag-stripe mode
WFS_IDC_TRACK2
lpDataRead contains the chip returned data formatted in as track 2.mag This value is set after the contactless transaction has been completed with mag-stripe mode
WFS_IDC_TRACK3
lpDataRead contains the chip returned data formatted in as track 3.mag This value is set after the contactless transaction has been completed with mag-stripe mode
WFS_IDC_CHIP
lpDataRead contains the BER-TLV formatted data read from the chip.

wTxOutcome
If multiple data sources are returned, this parameter should be the same for each one.

Specifies the contactless transaction outcome as one of the following flags:
…

wCardholderAction
If multiple data sources are returned, this parameter should be the same for each one.

Specifies the cardholder action as one of the following flags:
…

lpDataRead
Points to the data read from the chip after a contactless transaction has been completed successfully. If the value of wDataSource is equal to WFS_IDC_CHIP, the BER-TLV formatted data contains cryptogram tag (9F26) after a contactless chip transaction has been completed successfully. If the value of wDataSource is equal to WFS_IDC_TRACK1, WFS_IDC_TRACK2 or WFS_IDC_TRACK3, lpDataRead points to the data read from the chip, i.e the value returned by the card reader device and no cryptogram tag (9F26). This value is terminated with a single null character and cannot contain UNICODE characters.
…
wAlternateInterface
If wTxOutcome is not WFS_IDC_CLESS_TRYANOTHERINTERFACE, this should be ignored. If wTxOutcome is WFS_IDC_CLESS_TRYANOTHERINTERFACE, this specifies the alternative interface to be used to complete a transaction as one of the following flags: , in cases where the wTxOutcome is WFS_IDC_CLESS_TRYANOTHERINTERFACE:
Value
Meaning
WFS_IDC_CLESS_CONTACT
Contact chip interface should be used to complete a transaction.

WFS_IDC_CLESS_MAGNETICSTRIPE
Magnetic stripe interface should be used to complete a transaction.
lpClessUIOutcome
Pointer to a structure representing the user interface details required to be displayed to the cardholder after processing the outcome of a contactless transaction. If no user interface details are required, this will be NULL. Please refer to EMVCo Contactless Specifications for Payment Systems Book A, Section 6.2 for details of the data within this structure:

wMessageId
A single byte hexadecimal value which Rrepresents the EMVCo defined message identifier that indicates the text string to be displayed e.g. 0x1B is the “Authorising Please Wait” message (see EMVCo Contactless Specifications for Payment Systems Book A, Section 9.4) that indicates the text string to be displayed.
wValueQualifier
If lpszValue is NULL, this should be ignored as the Value Qualifier is not present, This data is If the Value Qualifier is defined by EMVCo as either “Amount” or “Balance” as is one of present, it will be specified as one of the following flags:

Value
Meaning
WFS_IDC_CLESS_AMOUNT
Value Qualifier is Amount.

WFS_IDC_CLESS_BALANCE
Value Qualifier is Balance.
lpszValue
Represents the value of the amount or balance to be displayed when wValueQualifier is presenta Value Qualifier is present. If no Value Qualifier is present, this will be NULL.
lpszCurrencyCode
Represents the numeric value of currency code as per ISO 4217. This will be NULL if the Currency Code is not available.
lpszLanguagePreferenceData
Represents the language preference (EMV Tag ‘5F2D’) if returned by the card. If not returned, this will be NULL. The application should use this data to display all messages in the specified language until the transaction concludes.
lpClessUIRestart
Pointer to a structure representing the user interface details required to be displayed to the cardholder when a transaction needs to be completed with a re-tap. If no user interface details are required, this will be NULL. For structure description see the lpClessUIOutcome field description.
lpDiscretionaryData
Points to the payment system's specific discretionary data read from the chip, in a BER-TLV format, after a contactless transaction has been completed. If discretionary data is not present, this will be NULL.
Error Codes..
WFS_ERR_IDC_NOMEDIA
The card was removed before completion of the read actionoperation.
Events..

WFS_EXEE_IDC_EMVCLESSREADSTATUS
This event is generated to notify the application that the card reader is ready for a contactless card tap and the status of aafter the contactless card tap.
WFS_SRVE_IDC_MEDIAREMOVED
This event is generated when a the card is removed before completion of a the read operation.

Comments
NoneFor example scenarios of events that can be generated from this command, see section 9, Intelligent Contactless Card Sequence Diagrams.
Clarifications for WFS_CMD_IDC_EMVCLESS_ISSUERUPDATE

Events..

Value
Meaning

WFS_EXEE_IDC_EMVCLESSREADSTATUS
This event is generated to notify the application that the card reader is ready for a contactless card tap and the status after the contactless card tap.

Comments
NoneFor example scenarios of events that can be generated from this command, see section 9, Intelligent Contactless Card Sequence Diagrams.
Clarifications for WFS_EXEE_IDC_EMVCLESSREADSTATUS

Description
This execute event notifies the application that the intelligent contactless card reader is ready for a contactless card tap and the status after the contactless card tap when that the communication (i.e. the commands exchanged linked to the tap) between the card and the intelligent contactless card reader are complete. The application can use this event to display intermediate messages, progress of card read, audio signals or anything else that might be required. The intelligent contactless card reader will continue the processing and the result of the processing will be returned in the out parameters of the WFS_CMD_IDC_EMVCLESS_PERFORM_TRANSACTION command.
Comments
NoneFor example scenarios illustrating when this event can be generated during a WFS_CMD_IDC_EMVCLESS_PERFORM_TRANSACTION or WFS_CMD_IDC_EMVCLESS_ISSUERUPDATE command, see section 9, Intelligent Contactless Card Sequence Diagrams.
Clarifications for C - Header File
/* Values of WFSIDCSTATUS.dwGuidLights [...]

 WFSIDCCAPS.dwGuidLights [...],

 WFSIDCSETGUIDLIGHT.wGuidLight */

#define WFS_IDC_GUIDANCE_NOT_AVAILABLE (0x00000000)

#define WFS_IDC_GUIDANCE_OFF (0x00000001)
/* The following value (WFS_IDC_GUIDANCE_ON) should NOT be used */

#define WFS_IDC_GUIDANCE_ON (0x00000002)

#define WFS_IDC_GUIDANCE_SLOW_FLASH (0x00000004)

#define WFS_IDC_GUIDANCE_MEDIUM_FLASH (0x00000008)

#define WFS_IDC_GUIDANCE_QUICK_FLASH (0x00000010)

#define WFS_IDC_GUIDANCE_CONTINUOUS (0x00000080)

#define WFS_IDC_GUIDANCE_RED (0x00000100)

#define WFS_IDC_GUIDANCE_GREEN (0x00000200)

#define WFS_IDC_GUIDANCE_YELLOW (0x00000400)

#define WFS_IDC_GUIDANCE_BLUE (0x00000800)

#define WFS_IDC_GUIDANCE_CYAN (0x00001000)

#define WFS_IDC_GUIDANCE_MAGENTA (0x00002000)

#define WFS_IDC_GUIDANCE_WHITE (0x00004000)
#define WFS_IDC_GUIDANCE_ENTRY (0x00100000)

#define WFS_IDC_GUIDANCE_EXIT (0x00200000)

Clarifications for 9.
Intelligent Contactless Card Sequence Diagrams
9.3 Card Removed Before Completion

[image: image3.png]Cardholder

"Present Card"

ard Tapped

WES_CMD_IDC_EMVCLESS_QUERY_APPLICATIONS

XFS IDC SP I

WFS_EXECUTE_COMPLETE

Get Supported Applications

Supported Applications

WFS_CMD_IDC_EMVCLESS_CONFIGURE

WFS_EXECUTE_COMPLETE

Set Reader Configuration

WFS_CMD_IDC_EMVCLESS_PERFORM_TRANSACTION

WFS_EXEE_IDC_EMVCLESSREADSTATUS
IpReadstafus->wMessageld = 0x15
IpReadstatus->wStatus = WFS_IDC_CLESS_READYTOREAD

Enable Reader

Present Card

*Card Removed

|_ Before Completion"

WFS_SRVE_IDC_MEDIAREMOVED

Media Removed

WFS_EXECUTE_COMPLETE
hResult = WFS_ERR_IDC_NOMEDIA

Card Reader I

Process
Contactless
Transaction

Figure 3 Card removed before completion
Cash Dispensers

Class Name

CDM

Clarifications for Legislative Note Handling Standards Support

The XFS CDM specification is designed to support legislative note handling standards that may exist in various countries and economic regions. XFS supports these note handling standards through the ability to attribute a level number to each note. The XFS classification for each level, and how each level is handled is as follows:

1. Level 1 – Note is not recognized.

2. Level 2 – Recognized counterfeit note.

3. Level 3 – Suspected counterfeit note.

4. Level 4 – Recognized note that is identified as genuine.

If a note handling standard is to be supported, then this classification of levels can be used to report items which have been recognized/not recognized so that they can be processed accordingly. Where no standard is required to be supported this classification can be ignored, in which case note levels do not have to be reported.

The above classification levels can be used to support standards that require note handling functionality which includes:

1. The ability to remove counterfeit notes from circulation.

2. Reporting of unrecognized, suspected counterfeit and recognized counterfeit notes

3. Creating and reporting of note signatures in order to allow back-tracing of notes.
Clarifications for WFS_INF_CDM_STATUS
fwDispenser
Supplies the state of the dispenser’s logical cash units as one of the following values:
..
WFS_CDM_DISPCUSTOP
Due to a cash unit failure dispensing is impossible. No items can be dispensed because all of the cash units are in an empty, inoperative or manipulated condition. This state may also occur when a reject/retract cash unit is full or no reject/retract cash unit is present, or when an application lock is set on every cash unit which can be locked.
lppPositions
…
fwTransport
Supplies the state of the transport mechanism as one of the following values. The transport is defined as any area leading to or from the position:

Clarifications for WFS_INF_CDM_CAPABILITIES

Output Param
..

fwRetractTransportActions
Specifies the actions which may be performed on items which have been retracted to the transport. If the device does not have the capability to retract items to the transport or move items from the transport this value will be WFS_CDM_NOTSUPP. This field will be a combination of the following flags:

Value
Meaning

WFS_CDM_PRESENT
The items may be presented.

WFS_CDM_RETRACT
The items may be retracted moved to a retract cash unit.

WFS_CDM_REJECT
The items may be retracted moved to a reject bin.

WFS_CDM_ITEMCASSETTE
The items may be retracted moved to the item cassettes, i.e. cassettes that can be dispensed from.

fwRetractStackerActions
Specifies the actions which may be performed on items which have been retracted to the stacker. If the device does not have the capability to retract items to the stacker or move items from the stacker this value will be WFS_CDM_NOTSUPP. Otherwise it will be a combination of the following flags:

Value
Meaning

WFS_CDM_PRESENT
The items may be presented.

WFS_CDM_RETRACT
The items may be retracted moved to a retract cash unit.

WFS_CDM_REJECT
The items may be retracted moved to a reject bin.

WFS_CDM_ITEMCASSETTE
The items may be retracted moved to the item cassettes, i.e. cassettes that can be dispensed from.
Clarifications for WFS_INF_CDM_CASH_UNIT_INFO

Description

...
Counts

Item counts are typically based on software counts and therefore may not represent the actual number of items in the cash unit. Persistent values are maintained through power failures, open sessions, close session and system resets. If a cash unit is shared between the CDM and CIM device class, then CDM operations will result in count changes in the CIM cash unit structure and vice versa. All counts are reported consistently on both interfaces at all times.

On cash units that dispense items, if ulCount (on logical and physical cash units) reaches zero it will not decrement further but will remain at zero. When ulCount reaches zero no further dispense or denominate operations will be possible using that cash unit, unless the Service Provider provides a configuration option to continue using cash units when ulCount reaches zero. The default setting for any such configuration parameter must be to stop using the cash unit when this value reaches zero. If the Service Provider is configured such that the cash unit can still be used when ulCount reaches zero then WFS_CDM_STATCUEMPTY should not be generated when ulCount reaches zero, rather it should be generated when all physical cash units associated with the logical cash unit are physically empty. On recyclers, the Service Provider should not be configured to keep using the cash unit when ulCount is zero if the value in ulCount is used by any part of the application, as it may not be accurate. However, if the Service Provider is configured to keep using the cash unit when ulCount reaches zero, then the number of notes in the cash unit can be determined relative to ulInitialCount using ulDispensedCount, ulRetractedCount and the CIM ulCashInCount, e.g. Number of Notes = ulInitialCount – ulDispensedCount + ulRetractedCount + CIM::ulCashInCount.
On cash units that dispense items, ulCount on logical cash units is decremented when items are in customer access or successfully rejected. Therefore, items which are dispensed from the cash unit then removed from the device for other reasons (such as manual jam clearance) may mean that ulCount on logical cash units no longer reflects the number of items in the cash unit. The count of items in the cash unit should therefore be determined from other counts, e.g., ulCount on physical cash units or Number of Notes = ulInitialCount – ulDispensedCount + ulRetractedCount + CIM::ulCashInCount (if applicable).
Clarifications for WFS_INF_CDM_PRESENT_STATUS

Description
This command is used to obtain the status of the most recent customer transaction from a specified output position.The items may have been dispensed and/or presented as a result of the WFS_CMD_CDM_PRESENT or A customer transaction starts with a WFS_CMD_CDM_DISPENSE command and completes when the items are presented to the customer, or the transaction is cancelled by calling a command such as WFS_CMD_CDM_REJECT. A customer transaction may include multiple WFS_CMD_CDM_DISPENSE commands if the capability fwMoveItems reports WFS_CDM_TOSTACKER. Commands during the customer transaction may cause this status to change.
Other commands which can dispense items such as WFS_CMD_CDM_TEST_CASH_UNITS do not update this status. This status is not updated as a result of any other command that can dispense/present items.
This value is persistent and is valid until the next time an attempt is made to present or dispense items to the customer transaction.

The denominations reported by this command may not accurately reflect the operation if the cash units have been re-configured (e.g. if the values associated with a cash unit are changed, or new cash units are configured).

Input Param
LPWORD lpfwPosition;

lpfwPosition
Pointer to the required output position the items were presented or dispensed to as one of the following values:

Value
Meaning

WFS_CDM_POSNULL
The items were presented according to the default configuration.

WFS_CDM_POSLEFT
The items were presented to the left output position.

WFS_CDM_POSRIGHT
The items were presented to the right output position.

WFS_CDM_POSCENTER
The items were presented to the center output position.

WFS_CDM_POSTOP
The items were presented to the top output position.

WFS_CDM_POSBOTTOM
The items were presented to the bottom output position.

WFS_CDM_POSFRONT
The items were presented to the front output position.
WFS_CDM_POSREAR
The items were presented to the rear output position.
Clarifications for WFS_INF_CDM_GET_ITEM_INFO
Description
This command is used to get information about the number of level 1 / level 2 / level 3 / level 4 notes dispensed and the number of level 2 / level 3 / level 4 signatures created a single detected item. This information is available from the point where the first WFS_EXEE_CDM_INFO_AVAILABLE event is generated until one of the following CDM commands is executed:

WFS_CMD_CDM_DISPENSE, WFS_CMD_CDM_COUNT, WFS_CMD_CDM_PRESENT, WFS_CMD_CDM_RETRACT, WFS_CMD_CDM_REJECT, WFS_CMD_CDM_OPEN_SHUTTER, WFS_CMD_CDM_CLOSE_SHUTTER, WFS_CMD_CDM_RESET, WFS_CMD_CDM_START_EXCHANGE, WFS_CMD_CDM_END_EXCHANGE, WFS_CMD_CDM_CALIBRATE_CASH_UNIT, WFS_CMD_CDM_TEST_CASH_UNITS.
Additionally for a recycler, the following CIM commands will also invalidate the information:

WFS_CMD_CIM_CASH_IN_START, WFS_CMD_CIM_CASH_IN, WFS_CMD_CIM_CASH_IN_ROLLBACK, WFS_CMD_CIM_CASH_IN_END, WFS_CMD_CIM_RETRACT, WFS_CMD_CIM_RESET, WFS_CMD_CIM_START_EXCHANGE, WFS_CMD_CIM_END_EXCHANGE, WFS_CMD_CIM_CREATE_P6_SIGNATURE, WFS_CMD_CIM_REPLENISH, WFS_CMD_CIM_CASH_UNIT_COUNT.

This command is used to retrieve the required information on an individual item basis. Applications should loop retrieving the information for each index and for each level reported with the WFS_EXEE_CDM_INFO_AVAILABLE event.

Clarifications for WFS_INF_CDM_GET_ALL_ITEMS_INFO
Description
This command can be used to retrieve all item information available for all levels at once by specifying WFS_CDM_LEVEL_ALL in the usLevel parameter. Alternatively this command can be used to retrieve all information for a particular level of banknote. This information is available from the point where the first WFS_EXEE_CDM_INFO_AVAILABLE event is generated until one of the following CDM commands is executed:
WFS_CMD_CDM_DISPENSE, WFS_CMD_CDM_COUNT, WFS_CMD_CDM_PRESENT, WFS_CMD_CDM_RETRACT, WFS_CMD_CDM_REJECT, WFS_CMD_CDM_OPEN_SHUTTER, WFS_CMD_CDM_CLOSE_SHUTTER, WFS_CMD_CDM_RESET, WFS_CMD_CDM_START_EXCHANGE, WFS_CMD_CDM_END_EXCHANGE, WFS_CMD_CDM_CALIBRATE_CASH_UNIT, WFS_CMD_CDM_TEST_CASH_UNITS.

Additionally for a recycler, the following CIM commands will also invalidate the information:
WFS_CMD_CIM_CASH_IN_START, WFS_CMD_CIM_CASH_IN, WFS_CMD_CIM_CASH_IN_ROLLBACK, WFS_CMD_CIM_CASH_IN_END, WFS_CMD_CIM_RETRACT, WFS_CMD_CIM_RESET, WFS_CMD_CIM_START_EXCHANGE, WFS_CMD_CIM_END_EXCHANGE, WFS_CMD_CIM_CREATE_P6_SIGNATURE, WFS_CMD_CIM_REPLENISH, WFS_CMD_CIM_CASH_UNIT_COUNT.

The WFS_EXEE_CDM_INPUT_P6 event signals that a suspected forgery has been detected and is only generated when level 2 and/or level 3 notes are detected.

Clarifications for WFS_CMD_CDM_DISPENSE

Description

..

Note that a level 4 note can be dispensed, but is not necessarily presented to the customer. e.g. a note can be skewed, or can be unfit for dispensing.
Events
In addition to the generic events defined in [Ref. 1], the following events can be generated as a result of this command:

Value
Meaning

…
WFS_EXEE_CDM_INCOMPLETEDISPENSE
It has not been possible to dispense the entire denomination but part of the requested denomination has been dispensed, whether is on the intermediate stacker or in customer access. The return error code will be WFS_ERR_CDM_NOTDISPENSABLE.
Clarifications for WFS_CMD_CDM_PRESENT
Description
This command will move items to the exit position for removal by the user. If a shutter exists, then it will be implicitly controlled during the present operation, even if the bShutterControl capability is set to FALSE. The shutter will be closed when the user removes the items or the items are retracted. If lpfwPosition points to WFS_CDM_POSNULL the position set in the WFS_CMD_CDM_DISPENSE command which caused these items to be dispensed will be used.
In the case where the shutter is unlocked but deliberately held shut, if the items could have been in customer access then a WFS_ERR_CDM_PRERRORITEMS error code will be returned.

When this command successfully completes the items are in customer access.

Clarifications for WFS_CMD_CDM_COUNT

Output Param
..

usPStatus
Supplies the status of the physical cash unit as defined by the usPStatus field of the WFSCDMPHCU structure. one of the following values:
Value
Meaning

WFS_CDM_STATCUOK
The cash unit is in a good state.

WFS_CDM_STATCUFULL
The cash unit is full.

WFS_CDM_STATCUHIGH
The cash unit is almost full (reached or exceeded the threshold defined by WFSCDMCASHUNIT.ulMaximum).

WFS_CDM_STATCULOW
The cash unit is almost empty.

WFS_CDM_STATCUEMPTY
The cash unit is empty.

WFS_CDM_STATCUINOP
The cash unit is inoperative.

WFS_CDM_STATCUMISSING
The cash unit is missing.

WFS_CDM_STATCUNOVAL
The values of the specified cash unit are not available.

WFS_CDM_STATCUNOREF
There is no reference value available for the notes in this cash unit.

WFS_CDM_STATCUMANIP
The cash unit has been inserted (including removal followed by a reinsertion) when the device was not in the exchange state. This cash unit cannot be dispensed from.

Clarifications for WFS_CMD_CDM_RETRACT

Description
This command will retract items which may have been in customer access from an output position or from internal areas within the CDM. Retracted items will be moved to either a retract cash unit, a reject cash unit, item cash units, the transport or the intermediate stacker. After the items are retracted the shutter is closed automatically, even if the bShutterControl capability is set to FALSE.
If items are moved to a retract cash unit (i.e. a cash unit with usType WFS_CDM_TYPERETRACTCASSETTE), then the WFSCDMCASHUNIT.ulCount field of the retract cash unit must be incremented by 1 to specify the number of retracts. If items are moved to any other cash unit (e.g. a cash unit with usType WFS_CDM_TYPEREJECTCASSETTE) then the WFSCDMCASHUNIT.ulCount field of the cash unit must be incremented by the number of items that were thought to be present at the time the WFS_CMD_CDM_RETRACT command was issued or the number counted by the device during the retract. Note that reject bin counts are unreliable.

For cash recycler implementations it is recommended to use the WFS_CMD_CIM_RETRACT command instead of this command.

Clarifications for WFS_CMD_CDM_CALIBRATE_CASH_UNIT

Input Param
LPWFSCDMCALIBRATE lpCalibrateIn;

typedef struct _wfs_cdm_calibrate

{

USHORT

usNumber;

USHORT

usNumOfBills;

LPWFSCDMITEMPOSITION

*lpPosition;

} WFSCDMCALIBRATE, *LPWFSCDMCALIBRATE;

..
lpPosition
Specifies where the dispensed items should be moved to. For a description of the WFSCDMITEMPOSITION structure see section WFS_CMD_CDM_RESET.
This parameter is a pointer to a pointer to WFSCDMITEMPOSITION structure.
Clarifications for WFS_CMD_CDM_GET_ALL_ITEMS_INFO

Output Param
..

lpszImageFileName
Full file path to an image file containing the serial number(s). If no image is available then this field is NULL. The application is responsible for the use and management of this file. For example, the application can transfer the image files to a directory which is managed by the application.
Clarifications for WFS_CMD_CDM_RESET
Description
Sends a service reset to the Service Provider. This command may trigger a self-test, for example, initializing memory, checking device state, etc. For the details of any self-test performed, vendor specific documentation may have to be consulted.
Input Param
…
fwOutputPosition
If usNumber is zero and lpRetractArea is NULL then this field defines the output position to which items are to be moved. In all other cases this field will be ignored. Possible values areThe output position to which items are to be moved. If the usNumber is non-zero then this field will be ignored. The value is specified as one of the following values:
Value
Meaning

WFS_CDM_POSNULL
The default configuration.

WFS_CDM_POSOUTLEFT
The left output position.

WFS_CDM_POSOUTRIGHT
The right output position.

WFS_CDM_POSOUTCENTER
The center output position.

WFS_CDM_POSOUTTOP
The top output position.

WFS_CDM_POSOUTBOTTOM
The bottom output position.

WFS_CDM_POSOUTFRONT
The front output position.

WFS_CDM_POSOUTREAR
The rear output position.
Clarifications for WFS_EXEE_CDM_INCOMPLETEDISPENSE
Description
This execute event is generated during WFS_CMD_CDM_DISPENSE when it has not been possible to dispense the entire denomination but part of the requested denomination is on the intermediate stacker or in customer access when not all of the items specified in a WFS_CMD_CDM_DISPENSE operation could be dispensed. Some of the items have been dispensed. If the device has no intermediate stacker then the items that were dispensed will be in customer access.

Event Param
LPWFSCDMDENOMINATION lpDenomination;

lpDenomination
The WFSCDMDENOMINATION structure is defined in the documentation of the command WFS_CMD_CDM_DENOMINATE. Note that in this case the values in this structure report the amount and number of each denomination that are in customer access or on the intermediate stacker. WFS_INF_CDM_PRESENT_STATUS can be used to determine whether the items are in customer accesshas actually been dispensed.
Comments
None.
Clarifications for WFS_EXEE_CDM_INPUT_P6
Description
This execute event is generated if level 2 and/or level 3 notes are detected during execution of a CDM command. Details about the notes detected and their associated signatures are obtained through the CIM interface.
Clarifications for C - Header File
#define WFS_CDM_GUIDANCE_NOT_AVAILABLE (0x00000000)

#define WFS_CDM_GUIDANCE_OFF (0x00000001)

#define WFS_CDM_GUIDANCE_SLOW_FLASH (0x00000004)

#define WFS_CDM_GUIDANCE_MEDIUM_FLASH (0x00000008)

#define WFS_CDM_GUIDANCE_QUICK_FLASH (0x00000010)

#define WFS_CDM_GUIDANCE_CONTINUOUS (0x00000080)

#define WFS_CDM_GUIDANCE_RED (0x00000100)

#define WFS_CDM_GUIDANCE_GREEN (0x00000200)

#define WFS_CDM_GUIDANCE_YELLOW (0x00000400)

#define WFS_CDM_GUIDANCE_BLUE (0x00000800)

#define WFS_CDM_GUIDANCE_CYAN (0x00001000)

#define WFS_CDM_GUIDANCE_MAGENTA (0x00002000)

#define WFS_CDM_GUIDANCE_WHITE (0x00004000)
#define WFS_CDM_GUIDANCE_ENTRY (0x00100000)
#define WFS_CDM_GUIDANCE_EXIT (0x00200000)

/* Values of WFSCDMSTATUS.dwGuidLights [...]

 WFSCDMCAPS.dwGuidLights [...] */

#define WFS_CDM_GUIDANCE_NOT_AVAILABLE (0x0000)

Personal Identification Number Keypads (PIN Pads)

Class Name

PIN

Clarifications for Section 3. References

Added reference:

	45. PCI PIN Transaction Security (PTS) Point of Interaction (POI) version 6.1

Clarifications for WFS_INF_PIN_CAPABILITIES

Output Param
…

fwKeyCheckModes
Specifies the key check modes that are supported to check the correctness of an imported key value. The modes available for each key may depend on security requirements of the algorithm (for example, see [Ref. 45]). The algorithm (i.e. DES, 3DES, AES, SM4) and use is determined by the algorithm of the key being checked and security requirements. If the key size is larger than the algorithm block size, then only the first block will be used. It can be a combination of the following flags:

Value
Meaning

WFS_PIN_KCVSELF
The key check value (KCV) is created by an encryption of the key with itself. For a double-length or triple-length key the KCV is generated using 3DES encryption using the first 8 bytes of the key as the source data for the encryption.
WFS_PIN_KCVZERO
The key check value (KCV) is created by encrypting a zero value with the key.
lpETSCaps
Specifies the capabilities of the ETS device. This value is NULL if the fwType does not contain WFS_PIN_TYPEETS.

typedef struct _wfs_pin_ets_location_cap

{

LONG

lXPos;

LONG

lYPos;

USHORT

usXSize;

USHORT

usYSize;

WORD

wMaximumTouchFrames;

WORD

wMaximumTouchKeys;

WORD

wFloatFlags;

} WFSPINETSCAPS, *LPWFSPINETSCAPS;
Clarifications for WFS_INF_PIN_GET_LAYOUT

Output Param
…

usYPos
Specifies the position of the top left corner of the FK relative to the top left hand side of the layout. For ETS devices, must be in the range defined in the WFSPINFRAME. For non-ETS devices, must be a value between 0 and 999, where 0 is the top edge and 999 is the bottom edge.
Clarifications for WFS_CMD_PIN_GET_DATA
Description
This function is used to return keystrokes entered by the user. It will automatically set the PIN pad to echo characters on the display if there is a display. For each keystroke an execute notification event WFS_EXEE_PIN_KEY is sent in order to allow an application to perform the appropriate display action (i.e. when the PIN pad has no integrated display).

The WFS_EXEE_PIN_ENTERDATA event will be generated when the PIN pad is ready for the user to start entering data.

When the maximum number of digits is entered and the flag bAutoEnd is true, or a terminate key is pressed after the minimum number of digits is entered, the command completes. If the <Cancel> key is a terminator key and is pressed, the command will complete successfully even if the minimum number of digits has not been entered.

Terminating FDKs can have the functionality of <Enter> (terminates only if minimum length has been reached) or <Cancel> (can terminate before minimum length is reached). The configuration of this functionality is vendor specific.

Clarifications for WFS_CMD_PIN_CRYPT

Input Param
…

wMode
If MACing then this parameter will be ignored, otherwise this parameter sSpecifies the modewhether to encrypt or decrypt, values are one of the following:

Value
Meaning

WFS_PIN_MODEENCRYPT
Encrypt with key.

WFS_PIN_MODEDECRYPT
Decrypt with key.

WFS_PIN_MODERANDOM
An 8 byte random value shall be returned (in this case all the other input parameters are ignored).
Clarifications for WFS_CMD_PIN_GET_PINBLOCK

Input Param
…

lpsCustomerData
The customer data should be an ASCII string. Used for ANSI, ISO-0 and, ISO-1 and ISO-3 algorithm to build the formatted PIN. For ANSI and, ISO-0 and ISO-3 the PAN (Primary Account Number, without the check number) is supplied, for ISO-1 a ten digit transaction field is required. If not used a NULL is required.
Clarifications for WFS_CMD_PIN_GET_PINBLOCK_EX

Input Param
…

lpsCustomerData
The customer data should be an ASCII string. Used for ANSI, ISO-0 and, ISO-1 and ISO-3 algorithm to build the formatted PIN. For ANSI and, ISO-0 and ISO-3 the PAN (Primary Account Number, without the check number) is supplied, for ISO-1 a ten digit transaction field is required. If not used a NULL is required.
Clarifications for WFS_INF_PIN_DEFINE_LAYOUT

Input Param
…

usYPos
Specifies the position of the top left corner of the FK relative to the top left hand side of the layout. For ETS devices, must be in the range defined in the WFSPINFRAME. For non-ETS devices, must be a value between 0 and 999, where 0 is the top edge and 999 is the bottom edge.
Clarifications for WFS_CMD_PIN_AUTHENTICATE

dwSigner
Specifies the signer of the data, with one of the following values:

Value
Meaning

..
WFS_PIN_SIGNER_TR34
The format of the data that was signed complies with the data defined in X9 TR34-2012 [Ref. 42]. This value can only be used in combination with the WFS_PIN_SIGNER_CERTHOST, WFS_PIN_SIGNER_CA or WFS_PIN_SIGNER_HL flags.

In addition, a combination of the following flags can optionally be used:

WFS_PIN_SIGNER_TR34
The format of the data that was signed complies with the data defined in X9 TR34-2012 [Ref. 42]. This value can only be used in combination with the WFS_PIN_SIGNER_CERTHOST, WFS_PIN_SIGNER_CA or WFS_PIN_SIGNER_HL flags.

lpxSignedData
..
If the WFS_PIN_SIGNER_TR34 flag is set, then either the WFS_PIN_SIGNER_CERTHOST, WFS_PIN_SIGNER_CA or WFS_PIN_SIGNER_HL flag must also be set. Please refer to the X9 TR34-2012 [Ref. 42] for more details.

Clarifications for WFS_CMD_PIN_IMPORT_RSA_ENCIPHERED_PKCS7_KEY_EX

Output Param
…

dwRSAKeyCheckMode
Defines algorithm/method used to generate the public key check value/thumb print. The check value can be used to verify that the public key has been imported correctlyDefines the algorithm used to generate the signature contained in the message (lpxRSAData) sent to the host (see section 8.2.2 step 2c). It can be one of the following flags:
Error Codes
In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated by this command:

Value
Meaning

…

WFS_ERR_PIN_FORMATINVALID
The format of the message or key block is invalid.
WFS_ERR_PIN_CONTENTINVALID
The content of the message or key block is invalid.
Clarifications for WFS_EXEE_PIN_LAYOUT

Event Param
…

usYPos
Specifies the position of the top left corner of the FK relative to the top left hand side of the layout. For ETS devices, must be in the range defined in the WFSPINFRAME. For non-ETS devices, must be a value between 0 and 999, where 0 is the top edge and 999 is the bottom edge.

Clarifications for C - Header File
..

/* Values of WFSPINSTATUS.dwGuidLights [...]

 WFSPINCAPS.dwGuidLights [...]

*/

#define WFS_PIN_GUIDANCE_NOT_AVAILABLE (0x00000000)

#define WFS_PIN_GUIDANCE_OFF (0x00000001)
/* The following value (WFS_PIN_GUIDANCE_ON) should NOT be used */

#define WFS_PIN_GUIDANCE_ON (0x00000002)
#define WFS_PIN_GUIDANCE_SLOW_FLASH (0x00000004)

#define WFS_PIN_GUIDANCE_MEDIUM_FLASH (0x00000008)

#define WFS_PIN_GUIDANCE_QUICK_FLASH (0x00000010)

#define WFS_PIN_GUIDANCE_CONTINUOUS (0x00000080)

#define WFS_PIN_GUIDANCE_RED (0x00000100)
#define WFS_PIN_GUIDANCE_GREEN (0x00000200)

#define WFS_PIN_GUIDANCE_YELLOW (0x00000400)

#define WFS_PIN_GUIDANCE_BLUE (0x00000800)

#define WFS_PIN_GUIDANCE_CYAN (0x00001000)

#define WFS_PIN_GUIDANCE_MAGENTA (0x00002000)

#define WFS_PIN_GUIDANCE_WHITE (0x00004000)
#define WFS_PIN_GUIDANCE_ENTRY (0x00100000)

#define WFS_PIN_GUIDANCE_EXIT (0x00200000)

Clarifications for Luxemburg Protocol
Comments
Luxembourg encryption commands defined in the following paragraphs will return the generic error PROT_LUX_ERR_INVALID_DATA when the input data is invalid.
Note that since the introduction of the error codes for the Luxemburg Protocol, they have been redefined in the header file as positive values. This is to correct the original oversight of being defined as negative values which cannot be meaningfully returned in the WORD wResult output parameter. They have therefore been redefined as positive values in such a way that existing and future implementations which type cast them to an unsigned type will not be impacted.

Clarifications for Luxemburg-specific Header File
..

#define PROT_LUX_SUCCESS (0)

#define PROT_LUX_ERR_INVALID_CMD (USHRT_MAX-(PROT_LUX_RESULT_OFFSET + 1))

#define PROT_LUX_ERR_INVALID_DATA (USHRT_MAX-(PROT_LUX_RESULT_OFFSET + 21))

#define PROT_LUX_ERR_INVALID_KEY (USHRT_MAX-(PROT_LUX_RESULT_OFFSET + 32))

/* values of PROTLUXLOADAPPKEYOUT.wResult */

/* values of PROTLUXCHECKMACOUT.wResult */

#define PROT_LUX_ERR_VERIFICATION_FAILED (USHRT_MAX -(PROT_LUX_RESULT_OFFSET + 43))

/* values of PROTLUXPINBLOCKOUT.wResult */

#define PROT_LUX_ERR_PIN_FORMAT_LENGTH (USHRT_MAX -(PROT_LUX_RESULT_OFFSET + 54))

Check Reader/Scanner

Class Name

CHK

No clarifications available.
Depository Unit

Class Name

DEP

No clarifications available.
Text Terminal Unit

Class Name

TTU

No clarifications available.
Sensors and Indicators Units

Class Name

SIU
No clarifications available.
Vendor Dependent Mode

Class Name

VDM
Clarifications for WFS_CMD_VDM_ENTER_MODE_ACK
Description
This command is issued by a registered application as an acknowledgement to the WFS_SRVE_VDM_ENTER_MODE_REQ event and it indicates that the application is ready for the system to enter Vendor Dependent Mode. All registered applications (including the application that issued the request to enter Vendor Dependent Mode) must respond before Vendor Dependent Mode will be entered. Completion of this command is immediate.
Note: Applications must be prepared to allow the Vendor Dependent Application to display on the active interface. This means that applications should no longer try to be the foreground or topmost window to ensure that the Vendor Dependent Application is visible.

Clarifications for WFS_SRVE_VDM_INTERFACE_ CHANGED

Description
This service event is used to indicate that the required interface has changed. This can be as a result of a WFS_CMD_VDM_SET_ACTIVE_INTERFACE command, or when the active interface is changed through vendor dependent means while in VDM. The wActiveInterface field of the WFSVDMACTIVEINTERFACE structure indicates which interface has been selected.
Note: Applications must be prepared to allow the Vendor Dependent Application to display on the active interface. This means that applications should no longer try to be the foreground or topmost window to ensure that the Vendor Dependent Application is visible.

Cameras

Class Name

CAM
Clarifications for WFS_INF_CAM_STATUS

Output Param
..

fwMedia […]
Specifies the state of the recording media of the cameras. A number of indexes are defined below. The maximum fwMedia index is WFS_CAM_CAMERAS_MAX. For a device which stores pictures on a hard disk drive or other general-purpose storage, the value of the fwMedia field should be WFS_CAM_MEDIANOTSUPP.
Alarms

Class Name

ALM
No clarifications available.
Card Embossing Unit
Class Name

CEU
No clarifications available.
Cash In Module

Class Name

CIM

Clarifications for Legislative Note Handling Standards Support

1. Level 1 – Note not recognized. The note is returned to the user.
Clarifications for WFS_INF_CIM_STATUS

Output Param
…

fwIntermediateStacker
Supplies the state of the intermediate stacker as one of the following values:

Value
Meaning

WFS_CIM_ISEMPTY
The intermediate stacker is empty.

WFS_CIM_ISNOTEMPTY
The intermediate stacker is not empty.

WFS_CIM_ISFULL
The intermediate stacker is full. This may also be reported during a cash-in transaction where a limit specified by WFS_CMD_CIM_SET_CASH_IN_LIMIT has been reached.
lppPositions
…
fwTransport
Supplies the state of the transport mechanism as one of the following values. The transport is defined as any area leading to or from the position:

Clarifications for WFS_INF_CIM_CAPABILITIES

Output Param
…

fwExchangeType
Specifies the type of cash unit exchange operations supported by the CIM. Values are a combination of the following flags:

Value
Meaning

WFS_CIM_EXBYHAND
The CIM supports manual replenishment either by emptying the cash unit by hand or by replacing the cash unit.

WFS_CIM_EXTOCASSETTES
The CIM supports moving items from the bill cash units to the replenishment cash unit to the bill cash units.

WFS_CIM_CLEARRECYCLER
The CIM supports the emptying of recycle cash units.

WFS_CIM_DEPOSITINTO
The CIM supports moving items from the deposit entrance to the bill cash units.
lpszExtra
The parameter that reports how notes are classified and handled is reported in lpszExtra as follows. If level 2/3 notes are not to be returned to the customer by these rules, they will not be returned regardless of whether their specific note type is configured to not be accepted by WFS_CMD_CIM_CONFIGURE_NOTETYPES:
Comments
…

	bShutter
	bShutterControl
	WFSCIMPOSCAPS
.bPresentControl
	Description

	TRUE
	TRUE
	TRUE
	Service Provider implicitly opens the shutter, presents items and closes the shutter when all items are taken.

	TRUE
	TRUE
	FALSE
	Service Provider implicitly opens the shutter for input. Application required to present items using WFS_CMD_CIM_PRESENT_MEDIA.

	TRUE
	FALSE
	TRUE
	Application is required to present items using WFS_CMD_CIM_OPEN_SHUTTER and then call WFS_CMD_CIM_CLOSE_SHUTTER when all items are taken.

	TRUE
	FALSE
	FALSE
	Application is required to present items either by using WFS_CMD_CIM_PRESENT_MEDIA, or alternatively, by using, WFS_CMD_CIM_OPEN_SHUTTER and then WFS_CMD_CIM_CLOSE_SHUTTER when all items are taken.

	FALSE
	TRUE
	TRUE
	Service Provider implicitly opens the shutter, presents items and closes the shutter when all items taken.

	FALSE
	TRUE
	FALSE
	Service Provider implicitly opens the shutter for input. Application required to present items using WFS_CMD_CIM_PRESENT_MEDIA.

	FALSE
	FALSE
	TRUE
	Not Supported.

	FALSE
	FALSE
	FALSE
	Application required to present items using WFS_CMD_CIM_PRESENT_MEDIA.

Clarifications for WFS_INF_CIM_BANKNOTE_TYPES

Output Param
…

bConfigured
Specifies whether or not the banknote reader recognizes this note type. If TRUE the banknote reader will accept this note type during a cash-in operation, if FALSE the banknote reader will refuse this note type unless it must be retained by note classification rules.
Clarifications for WFS_INF_CIM_CASH_UNIT_INFO

Output Param
…

usStatus
Describes the status of the cash unit as one of the following values:

Value
Meaning

…

WFS_CIM_STATCULOW
The cash unit is almost empty (i.e. reached or below the threshold defined by ulMinimum). This value is only reported for CDM specific cash units which can dispense media items.(fwType == WFS_CIM_TYPECDMSPECIFIC) It is not mandatory to report this for recycle cash units (fwType == WFS_CIM_TYPERECYCLING).
…

lppPhysical
Pointer to an array of pointers to WFSCIMPHCU structures:
…
usPStatus
Supplies the status of the physical cash unit as one of the following values:

Value
Meaning

…

WFS_CIM_STATCULOW
The cash unit is almost empty. This value is only reported for CDM specific cash units which can dispense media items. It is not mandatory to report this for recycle cash units (fwType == WFS_CIM_TYPERECYCLING) (fwType == WFS_CIM_TYPECDMSPECIFIC).
…
Comments
The following table defines the interpretation of the fwItemType flag for single values and a sub-set of possible combinations (many of which may not actually be possible on physical hardware implementations). The check mark means that the corresponding flag is set, empty means that the corresponding flag is not set.

For a definition of the terms 'fit' and 'unfit' see the description of fwItemType itself. The combinations not included in this table can be interpolated from this table.

	ALL
	UNFIT
	INDIVIDUAL
	LEVEL 3
	LEVEL 2
	LEVEL 1
	Description

	√
	
	
	
	
	
	Fit notes for all note ids

	
	√
	
	
	
	
	Unfit notes for all note ids

	
	
	√
	
	
	
	Fit notes from the Individual note list

	
	
	
	√
	
	
	Level 3 notes for all note ids

	
	
	
	
	√
	
	Level 2 notes for all note ids

	√
	√
	
	
	
	
	Fit notes for all note ids & unfit notes for all note ids

	√
	
	
	√
	
	
	Fit notes for all note ids & level 3 notes for all note ids

	√
	
	
	
	√
	
	Fit notes for all note ids & level 2 notes for all note ids

	√
	
	
	√
	√
	
	Fit notes for all note ids & level 3 notes for all note ids & level 2 notes for all note ids

	√
	√
	
	√
	√
	
	Fit notes for all note ids & unfit notes for all note ids & level 3 notes for all note ids & level 2 notes for all note ids

	
	√
	√
	
	
	
	Fit notes from the Individual note list & unfit notes for all note ids

	
	
	√
	√
	
	
	Fit notes from the Individual note list & level 3 notes for all note ids.

	
	
	√
	
	√
	
	Fit notes from the Individual note list & level 2 notes for all note ids.

	
	
	√
	√
	√
	
	Fit notes from the Individual note list & level 3 notes for all note ids & level 2 notes for all note ids.

	
	√
	√
	√
	√
	
	Fit notes from the Individual note list & unfit notes for all note ids & level 3 notes for all note ids & level 2 notes for all note ids.

	
	
	
	
	
	√
	Unrecognized notes

Clarifications for WFS_INF_CIM_GET_P6_SIGNATURE

Description
This command is used to get one specific signature. Signatures are available from the point where the WFS_EXEE_CIM_INPUT_P6 (or WFS_EXEE_CDM_INPUT_P6) event is generated until one of the following CIM commands is executed:

WFS_CMD_CIM_CASH_IN_START, WFS_CMD_CIM_CASH_IN, WFS_CMD_CIM_CASH_IN_ROLLBACK, WFS_CMD_CIM_CASH_IN_END, WFS_CMD_CIM_RETRACT, WFS_CMD_CIM_RESET, WFS_CMD_CIM_START_EXCHANGE, WFS_CMD_CIM_END_EXCHANGE, WFS_CMD_CIM_CREATE_P6_SIGNATURE, WFS_CMD_CIM_REPLENISH, WFS_CMD_CIM_CASH_UNIT_COUNT, WFS_CMD_CIM_DEPLETE.
Output Param
..

usIndex
Specifies the index (zero to usNumOfSignatures-1) of the required signature.
Note: Signatures may be returned in any order; there is no implied relationship between this index and the order in which items are reported in the lpNoteNumberList in WFS_INF_CIM_GET_P6_INFO.

Clarifications for WFS_CMD_CIM_GET_ITEM_INFO

Description
This command is used to get information about the number of level 1 / level 2 / level 3 / level 4 notes detected and the number of level 2 / level 3 / level 4 signatures created a single detected item. This information is available from the point where the first WFS_EXEE_CIM_INFO_AVAILABLE event is generated until one of the following CIM commands is executed:
WFS_CMD_CIM_CASH_IN_START, WFS_CMD_CIM_CASH_IN, WFS_CMD_CIM_CASH_IN_ROLLBACK, WFS_CMD_CIM_CASH_IN_END, WFS_CMD_CIM_RETRACT, WFS_CMD_CIM_RESET, WFS_CMD_CIM_START_EXCHANGE, WFS_CMD_CIM_END_EXCHANGE, WFS_CMD_CIM_CREATE_P6_SIGNATURE, WFS_CMD_CIM_REPLENISH, WFS_CMD_CIM_CASH_UNIT_COUNT, WFS_CMD_CIM_DEPLETE.

Additionally for a recycler, the following CDM commands will also invalidate the information:

WFS_CMD_CDM_DISPENSE, WFS_CMD_CDM_COUNT, WFS_CMD_CDM_PRESENT, WFS_CMD_CDM_RETRACT, WFS_CMD_CDM_REJECT, WFS_CMD_CDM_OPEN_SHUTTER, WFS_CMD_CDM_CLOSE_SHUTTER, WFS_CMD_CDM_RESET, WFS_CMD_CDM_START_EXCHANGE, WFS_CMD_CDM_END_EXCHANGE, WFS_CMD_CDM_CALIBRATE_CASH_UNIT, WFS_CMD_CDM_TEST_CASH_UNITS. This command is similar to the WFS_INF_CIM_GET_P6_SIGNATURE command but returns additional information for level 2 / level 3 notes and also returns information relating to level 4 notes. The WFS_INF_CIM_GET_P6_INFO command, the WFS_INF_CIM_GET_P6_SIGNATURE command and the WFS_EXEE_CIM_INPUT_P6 event only relate to level 2 and level 3 notes. The WFS_EXEE_CIM_INPUT_P6 event signals that a suspected forgery has been detected and is only generated when level 2 and/or level 3 notes are detected.

This command is used to retrieve the required information on an individual item basis. Applications should loop retrieving the information for each index and for each level reported with the WFS_EXEE_CIM_INFO_AVAILABLE event.

Output Param
..

lpszImageFileName
Full file path to an image file containing the serial number(s). The format for the file is vendor and/or device specific. The file extension (if any) may be used to determine its format. If the Service Provider does not support this function or the image file has not been requested then lpszImageFileName is NULL. The format for the file is vendor and/or device specific. The file extension (if any) may be used to determine its format.

The application is responsible for the use and management of this file. For example, the application can transfer the image files to a directory which is managed by the application.

Clarifications for WFS_CMD_CIM_GET_ALL_ITEMS_INFO

Description
This command can be used to retrieve all item information available for all levels at once by specifying WFS_CIM_LEVEL_ALL in the usLevel parameter. Or this command can be used to retrieve all information for a particular level of banknote. This information is available from the point where the first WFS_EXEE_CIM_INFO_AVAILABLE event is generated until one of the following CIM commands is executed:
WFS_CMD_CIM_CASH_IN_START, WFS_CMD_CIM_CASH_IN, WFS_CMD_CIM_CASH_IN_ROLLBACK, WFS_CMD_CIM_CASH_IN_END, WFS_CMD_CIM_RETRACT, WFS_CMD_CIM_RESET, WFS_CMD_CIM_START_EXCHANGE, WFS_CMD_CIM_END_EXCHANGE, WFS_CMD_CIM_CREATE_P6_SIGNATURE, WFS_CMD_CIM_REPLENISH, WFS_CMD_CIM_CASH_UNIT_COUNT, WFS_CMD_CIM_DEPLETE..

Additionally for a recycler, the following CDM commands will also invalidate the information:

WFS_CMD_CDM_DISPENSE, WFS_CMD_CDM_COUNT, WFS_CMD_CDM_PRESENT, WFS_CMD_CDM_RETRACT, WFS_CMD_CDM_REJECT, WFS_CMD_CDM_OPEN_SHUTTER, WFS_CMD_CDM_CLOSE_SHUTTER, WFS_CMD_CDM_RESET, WFS_CMD_CDM_START_EXCHANGE, WFS_CMD_CDM_END_EXCHANGE, WFS_CMD_CDM_CALIBRATE_CASH_UNIT, WFS_CMD_CDM_TEST_CASH_UNITS. This command is similar to the WFS_INF_CIM_GET_P6_SIGNATURE command but returns additional information for level 2 / level 3 notes and also returns information relating to level 4 notes. The WFS_INF_CIM_GET_P6_INFO command, the WFS_INF_CIM_GET_P6_SIGNATURE command and the WFS_EXEE_CIM_INPUT_P6 event only relate to level 2 and level 3 notes. The WFS_EXEE_CIM_INPUT_P6 event signals that a suspected forgery has been detected and is only generated when level 2 and/or level 3 notes are detected.

Output Param
..

lpszImageFileName
Full file path to an image file containing the serial number(s). The format for the file is vendor and/or device specific. The file extension (if any) may be used to determine its format. If the Service Provider does not support this function or the image file has not been requested then lpszImageFileName is NULL. The format for the file is vendor and/or device specific. The file extension (if any) may be used to determine its format.

The application is responsible for the use and management of this file. For example, the application can transfer the image files to a directory which is managed by the application.

Clarifications for WFS_CMD_CIM_CASH_IN_START
Description
Before initiating a cash-in operation, an application must issue the WFS_CMD_CIM_CASH_IN_START command to begin a cash-in transaction. During a cash-in transaction any number of WFS_CMD_CIM_CASH_IN commands may be issued. The transaction is ended when either a WFS_CMD_CIM_CASH_IN_ROLLBACK, WFS_CMD_CIM_CASH_IN_END, WFS_CMD_CIM_RETRACT or WFS_CMD_CIM_RESET command is sent. Where WFSCIMCAPS.bShutterControl == FALSE this command precedes any explicit operation of the shutters.
Input Param
…
bUseRecycleUnits
Specifies whether or not the recycle cash units should be used when items are cashed in on a successful WFS_CMD_CIM_CASH_IN_END command for money cashed in during the transaction period. This parameter will be ignored if there are no recycle cash units or the hardware does not support this.
Clarifications for WFS_CMD_CIM_CASH_IN

Description
This command moves items into the CIM from an input position.

On devices with implicit shutter control, the WFS_EXEE_CIM_INSERTITEMS event will be generated when the device is ready to start accepting media.

The items may pass through the banknote reader for identification. Failure to identify items does not mean that the command has failed - even if some or all of the items are rejected by the banknote reader, the command may return WFS_SUCCESS. In this case one or more WFS_EXEE_CIM_INPUTREFUSE events will be sent to report the rejection. See also paragraph below regarding returning refused items.
If the device does not have a banknote reader then the output parameter will be NULL.

If the device has a cash-in stacker then this command will cause inserted level 4 items to be moved there after validation. Level 2 and level 3 items may also be moved to the cash-in stacker, but some devices may immediately move them to a designated cash unit. Items on the stacker will remain there until the current cash-in transaction is either cancelled by the WFS_CMD_CIM_CASH_IN_ROLLBACK command or confirmed by the WFS_CMD_CIM_CASH_IN_END command. These commands will cause any level 2 or level 3 items on the cash-in stacker to be moved to the appropriate cash unit. If there is no cash-in stacker then this command will move items directly to the cash units and the WFS_CMD_CIM_CASH_IN_ROLLBACK command will not be supported. Cash unit information will be updated accordingly whenever notes are moved to a cash unit during this command.
The bShutterControl field of the WFSCIMCAPS structure returned from the WFS_INF_CIM_CAPABILITIES query will determine whether the shutter is controlled implicitly by this command or whether the application must explicitly open and close the shutter using the WFS_CMD_CIM_OPEN_SHUTTER and WFS_CMD_CIM_CLOSE_SHUTTER commands, or the WFS_CMD_CIM_PRESENT_MEDIA command. If bShutterControl is FALSE then this command does not operate the shutter in any way, the application is responsible for all shutter control. If bShutterControl is TRUE this command opens the shutter at the start of the command and closes it once bills are inserted.

The bPresentControl field of the WFSCIMPOSCAPS structure returned from the WFS_INF_CIM_POSITION_CAPABILITIES query will determine whether or not it is necessary to call the WFS_CMD_CIM_PRESENT_MEDIA command in order to move items to the output position. If bPresentControl is TRUE then all items are moved immediately to the correct output position for removal (a WFS_CMD_CIM_OPEN_SHUTTER command will be needed in the case of explicit shutter control). If bPresentControl is FALSE then items are not returned immediately and must be presented to the correct output position for removal using the WFS_CMD_CIM_PRESENT_MEDIA command.

It is possible that a device may divide bill or coin accepting into a series of sub-operations under hardware control. In this case a WFS_EXEE_CIM_SUBCASHIN event may be sent after each sub-operation, if the hardware capabilities allow it.
Returning items (single bunch):

If bShutterControl is TRUE, and a single bunch of items is returned then this command will complete once the notes have been returned. A
WFS_SRVE_CIM_ITEMSPRESENTED event will be generated.
If bShutterControl is FALSE, and a single bunch of items is returned then this command will complete without generating a WFS_SR
VE_CIM_ITEMSPRESENTED event, instead the WFS_SR
VE_CIM_ITEMSPRESENTED event will be generated by the subsequent WFS_CMD_CIM_OPEN_SHUTTER or WFS_CMD_CIM_PRESENT_MEDIA command.

Returning items (multiple bunches):
It is also possible that a device will may in certain situations return refused notesitems in multiple subsequent bunches. In this case, this the WFS_CMD_CIM_CASH_IN command will not complete until the final bunch has been presented and after the last WFS_SRVE_CIM_ITEMSPRESENTED event has been generated. For these devices the bShutterControl and bPresentControl fields of the WFSCIMCAPS / WFSCIMPOSCAPS structure returned from the WFS_INF_CIM_CAPABILITIES / WFS_INF_CIM_POSITION_CAPABILITIES query must both be TRUE otherwise it will not be possible to return multiple bunches. Additionally it may be possible to request the completion of this command with WFSCancelAsyncRequest before the final bunch is presented so that after the completion of this command the WFS_CMD_CIM_RETRACT or WFS_CMD_CIM_RESET command can be used to move the remaining bunches, although the ability to do this will be hardware dependent.

If bShutterControl is TRUE, and a single bunch of notes is refused then the WFS_CMD_CIM_CASH_IN command will complete once the notes have been returned. A
WFS_SRVE_CIM_ITEMSPRESENTED event will be generated.

If bShutterControl is FALSE, then the WFS_CMD_CIM_CASH_IN command will complete without generating a WFS_SR
VE_CIM_ITEMSPRESENTED event. This will be generated by the Open/Close Shutter commands.

Note that it is not possible to return multiple bunches of notes if bShutterControl is FALSE.

Mixed Media Mode: If the device is operating in Mixed Media mode (WFSCIMSTATUS.wMixedMode == WFS_CIM_IPMMIXEDMEDIA) the Service Provider will not perform any operation unless the WFS_CMD_IPM_MEDIA_IN command is called or has already been called on the IPM interface.
…
Error Codes
In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated by this command:

Value
Meaning

…

WFS_ERR_CIM_TOOMANYITEMS
There were too many items inserted previously. The cash-in stacker is full at the beginning of this command. This may also be reported where a limit specified by WFS_CMD_CIM_SET_CASH_IN_LIMIT has already been reached at the beginning of this command.
Clarifications for WFS_CMD_CIM_CASH_IN_ROLLBACK

Description
This command is used to roll back a cash-in transaction. It causes all the cash items cashed in since the last WFS_CMD_CIM_CASH_IN_START command to be returned to the customer.

This command ends the current cash-in transaction. The cash-in transaction is ended even if this command does not complete successfully.

The bShutterControl field of the WFSCIMCAPS structure returned from the WFS_INF_CIM_CAPABILITIES query will determine whether the shutter is controlled implicitly by this command or whether the application must explicitly control the shutter using the WFS_CMD_CIM_OPEN_SHUTTER and WFS_CMD_CIM_CLOSE_SHUTTER commands, or WFS_CMD_CIM_PRESENT_MEDIA command. If bShutterControl is FALSE then this command does not operate the shutter in any way, the application is responsible for all shutter control. If bShutterControl is TRUE then this command opens the shutter and it is closed when all items are removed.

The bPresentControl field of the WFSCIMPOSCAPS structure returned from the WFS_INF_CIM_POSITION_CAPABILITIES query will determine whether or not it is necessary to call the WFS_CMD_CIM_PRESENT_MEDIA command in order to move items to the output position. If bPresentControl is TRUE then all items are moved immediately to the correct output position for removal (a WFS_CMD_CIM_OPEN_SHUTTER command will be needed in the case of explicit shutter control). If bPresentControl is FALSE then items are not returned immediately and must be presented to the correct output position for removal using the WFS_CMD_CIM_PRESENT_MEDIA command.

Items are returned in a single bunch or multiple bunches in the same way as described for the WFS_CMD_CIM_CASH_IN command.

Mixed Media Mode:
If the device is operating in Mixed Media mode (WFSCIMSTATUS.wMixedMode == WFS_CIM_IPMMIXEDMEDIA) the Service Provider will not perform any operation unless the WFS_CMD_IPM_MEDIA_IN_ROLLBACK command is called or has already been called on the IPM interface. Alternatively, if the WFSCIMCAPS.bMixedDepositAndRollback is TRUE, then the WFS_CMD_IPM_MEDIA_IN_END command could be used instead of the WFS_CMD_IPM_MEDIA_IN_ROLLBACK command in order to deposit the checks and return the bills items.
Clarifications for WFS_CMD_CIM_RETRACT
Input Param
LPWFSCIMRETRACT lpRetract;

…

usIndex
If usRetractArea is set to WFS_CIM_RA_RETRACT this field defines the position inside the retract cash units into which the cash is to be retracted. usIndex starts with a value of one (1) for the first retract position and increments by one for each subsequent position. If there are several logical retract cash units (of type WFS_CIM_TYPERETRACTCASSETTE in command WFS_INF_CIM_CASH_UNIT_INFO), usIndex would be incremented from the first position of the first retract cash unit to the last position of the last retract cash unit defined in WFSCIMCASHINFO. The maximum value of usIndex is the sum of the ulMaximum of each retract cash unit. If usRetractArea is not set to WFS_CIM_RA_RETRACT the value of this field is ignored.
Clarifications for WFS_CMD_CIM_OPEN_SHUTTER
Description
This command opens the shutter.
In cases where multiple bunches are to be returned under explicit shutter control and the first bunch has already been presented and taken and the output position is empty, this command moves the next bunch to the output position before opening the shutter. This does not apply if the output position is not empty, for example if items had been re-inserted or dropped back into the output position as the shutter closed.
…

Events
In addition to the generic events defined in [Ref. 1], the following events can be generated as a result of this command:

Value
Meaning

WFS_SRVE_CIM_ITEMSTAKEN
The items have been removed by the user. This event is only generated if the bItemsTakenSensor field returned in the capabilities information is TRUE.

WFS_SRVE_CIM_ITEMSINSERTED
Items have been inserted by the user.

WFS_SRVE_CIM_SHUTTERSTATUSCHANGED
The shutter status has changed.

WFS_SRVE_CIM_ITEMSPRESENTED
Items have been presented to the user to be taken.
Clarifications for WFS_CMD_CIM_START_EXCHANGE
fwExchangeType
Specifies the type of the cash unit exchange operation. This field should be set to one of the following values:

Value
Meaning

WFS_CIM_EXBYHAND
The cash units will be replenished manually either by filling or emptying the cash unit by hand or by replacing the cash unit.

WFS_CIM_EXTOCASSETTES
Items will be moved from the replenishment container to the bill cash units. Items will be moved from the bill cash units to the replenishment container. On a cash recycler, the CDM interface should be used to move items from a replenishment container.

WFS_CIM_CLEARRECYCLER
Items will be moved from a recycle cash unit to a cash unit or output position.

WFS_CIM_DEPOSITINTO
Items will be moved from the deposit entrance to the bill cash units. See section 8.16 for an example flow.
Clarifications for WFS_CMD_CIM_RESET

Description
This command is used by the application to perform a hardware reset which will attempt to return the CIM device to a known good state. This command does not over-ride a lock obtained on another application or service handle.

If a cash-in transaction is active, this command will end it (even if this command does not complete successfully). If an exchange state is active then this command will end the exchange state (even if this command does not complete successfully).

Persistent values, such as counts and configuration information are not cleared by this command.

The device will attempt to move any items found anywhere within the device to the position specified within the lpResetIn parameter. This may not always be possible because of hardware problems.

If items are found inside the device one or more WFS_SRVE_CIM_MEDIADETECTED events will be generated to inform the application where the items have actually been moved to.

The bShutterControl field of the WFSCIMCAPS structure returned from the WFS_INF_CIM_CAPABILITIES query will determine whether the shutter is controlled implicitly by this command or whether the application must explicitly control the shutter using the WFS_CMD_CIM_OPEN_SHUTTER and WFS_CMD_CIM_CLOSE_SHUTTER commands, or the WFS_CMD_CIM_PRESENT_MEDIA command. If bShutterControl is FALSE then this command does not operate the shutter in any way, the application is responsible for all shutter control. If bShutterControl is TRUE then this command operates the shutter as necessary so that the shutter is closed after the command completes successfully and any items returned to the customer have been removed.

The bPresentControl field of the WFSCIMPOSCAPS structure returned from the WFS_INF_CIM_POSITION_CAPABILITIES query will determine whether or not it is necessary to call the WFS_CMD_CIM_PRESENT_MEDIA command in order to move items to the output position. If bPresentControl is TRUE then all items are moved immediately to the correct output position for removal (a WFS_CMD_CIM_OPEN_SHUTTER command will be needed in the case of explicit shutter control). If bPresentControl is FALSE then items are not returned immediately and must be presented to the correct output position for removal using the WFS_CMD_CIM_PRESENT_MEDIA command.

If requested, items are returned in a single bunch or multiple bunches in the same way as described for the WFS_CMD_CIM_CASH_IN command.
Output Param
…
fwOutputPosition
If usNumber is zero and lpRetractArea is NULL then this field defines the output position to which items are to be moved. In all other cases this field will be ignored. Possible values areThe output position to which items are to be moved. If the usNumber is non-zero or if lpRetractArea indicates WFS_CIM_RA_BILLCASSETTES then this field must be zero. The value is set to one of the following values:
Value
Meaning

WFS_CIM_POSNULL
Take the default configuration.

WFS_CIM_POSOUTLEFT
Move items to the left output position.

WFS_CIM_POSOUTRIGHT
Move items to the right output position.

WFS_CIM_POSOUTCENTER
Move items to the center output position.

WFS_CIM_POSOUTTOP
Move items to the top output position.

WFS_CIM_POSOUTBOTTOM
Move items to the bottom output position.

WFS_CIM_POSOUTFRONT
Move items to the front output position.
WFS_CIM_POSOUTREAR
Move items to the rear output position.
Clarifications for WFS_CMD_CIM_CONFIGURE_NOTETYPES
Description
This command is used to configure the note types the banknote reader will should recognize accept during cash-in. All note types the banknote reader has toshould recognize accept must be given in the input structure. If an unknown note type is given the error code WFS_ERR_UNSUPP_DATA will be returned.
Clarifications for WFS_CMD_CIM_REPLENISH
Events
In addition to the generic events defined in [Ref. 1], the following events can be generated by this command:

Value
Meaning

WFS_USRE_CIM_CASHUNITTHRESHOLD
A threshold condition has occurred in one of the cash units.

WFS_EXEE_CIM_CASHUNITERROR
A problem occurred with a cash unit.

WFS_EXEE_CIM_NOTEERROR
An item detection error has occurred.

WFS_EXEE_CIM_INPUT_P6
Level 2 and / or level 3 notes are detected during this operation.

WFS_EXEE_CIM_INFO_AVAILABLE
Information is available for items detected during the cash processing operation.

WFS_EXEE_CIM_INCOMPLETEREPLENISH
If this command fails with an error code (not WFS_SUCCESS) but some items have been moved, then the details will be reported with this event. This event can only occur once per command.
Clarifications for WFS_CMD_CIM_DEPLETE

Events
In addition to the generic events defined in [Ref. 1], the following events can be generated by this command:

Value
Meaning

WFS_USRE_CIM_CASHUNITTHRESHOLD
A threshold condition has occurred in one of the cash units.

WFS_EXEE_CIM_CASHUNITERROR
A problem occurred with a cash unit.

WFS_EXEE_CIM_NOTEERROR
An item detection error has occurred.

WFS_EXEE_CIM_INPUT_P6
Level 2 and / or level 3 notes are detected during this operation.

WFS_EXEE_CIM_INFO_AVAILABLE
Information is available for items detected during the cash processing operation.

WFS_EXEE_CIM_INCOMPLETEDEPLETE
If this command fails with an error code (not WFS_SUCCESS) but some items have been moved, then the details will be reported with this event. This event can only occur once per command.

Clarifications for WFS_CMD_CIM_SET_CASH_IN_LIMIT
Input Param
LPWFSCIMCASHINLIMIT lpCashInLimit;
Pointer to the WFSCIMCASHINLIMIT structure. This cash-in limit structure can be used to limit the items that can be accepted during the cash-in operationtransaction. The limit set does not include counterfeit or suspected counterfeit items which may be detected during such a cash-in operationtransaction. If the lpCashInLimit field is set to a NULL pointer there is no specific amount/number of items limit for the next cash-in operationtransaction. Note that the cash-in limit set by this command may itself be limited by the physical cash-in limitation of the device.
If one or more limit conditions have been set by this command, the limit reached during the WFS_CMD_CIM_CASH_IN commandcash-in operation will be reported in the lpusReason field of the WFS_EXEE_CIM_INPUTREFUSE event.
typedef struct _wfs_cim_cash_in_limit

{

ULONG

ulTotalItemsLimit;

LPWFSCIMAMOUNTLIMIT

lpAmountLimit;

} WFSCIMCASHINLIMIT, *LPWFSCIMCASHINLIMIT;

ulTotalItemsLimit
If set to a non-zero value, specifies a limit on the total number of items to be accepted during the cash-in operationtransaction. If set to a zero value, this limitation will not be performed.

This limitation can only be used if WFS_CIM_LIMITBYTOTALITEMS is specified in the fwCashInLimit field of the WFS_INF_CIM_CAPABILITIES command. If however this is specified but not supported the WFS_ERR_UNSUPP_DATA error will be returned and no limit will be set.

lpAmountLimit
Pointer to the WFSCIMAMOUNTLIMIT structure. If set to a NULL pointer this limitation will not be performed. For CIM devices which can accept more than one currency this limit can only be applied to one currency for each cash-in operationtransaction.

This limitation can only be used if WFS_CIM_LIMITBYAMOUNT is specified in the fwCashInLimit field of the WFS_INF_CIM_CAPABILITIES command. If however this is specified but not supported the WFS_ERR_UNSUPP_DATA error will be returned and no limit will be set.

typedef struct _wfs_cim_amount_limit

{

CHAR

cCurrencyID[3];

ULONG

ulAmount;

} WFSCIMAMOUNTLIMIT, *LPWFSCIMAMOUNTLIMIT;

cCurrencyID
Currency identifier in ISO 4217 format [Ref. 2]. This must not be three ASCII 0x20 characters.
ulAmount
If set to a non-zero value, specifies a limit on the total amount of the cash-in operationtransaction. This value is expressed in minimum dispense units (see section WFS_INF_CIM_CURRENCY_EXP). If set to a zero value, this limitation will not be performed.
Clarifications for WFS_CMD_CIM_PRESENT_MEDIA
Description
Description
This command opens the shutter and presents items to be taken by the customer. The shutter is automatically closed after the media is taken. The command can be called after a WFS_CMD_CIM_CASH_IN, WFS_CMD_CIM_ROLLBACK, WFS_CMD_CIM_RESET or WFS_CMD_CIM_CREATE_P6_SIGNATURE command and can be used with explicit and implicit shutter control.
Clarifications for WFS_SRVE_CIM_ITEMSTAKEN
Description
This service event specifies that items presented to the user have been taken. This event may be generated at any time.

Clarifications for ATM Cash-In Transaction Flow - Application Guidelines

8.9 Multiple Bunches Returned During WFS_CMD_CIM_CASH_IN Refused Notes (Implicit Shutter Control and Implicit Present Control)

The following table describes the flow of a cash-in transaction where items are rejected during the transaction and the Service Provider has implicit shutter and present control implicitly controls the shutter. In this case the WFS_CMD_CIM_OPEN_SHUTTER, and WFS_CMD_CIM_CLOSE_SHUTTER and WFS_CMD_CIM_PRESENT_MEDIA commands are not used. Additionally, the number of items refused may be greater than the number of items that can be presented at the output position. Due to the complexity of this scenario, control of the shutter shutter and present control must be implicit. Therefore, there is no corresponding flow for explicit shutter and present control.
This flow covers the following cases:

· bShutterControl == TRUE, bItemsInsertedSensor == TRUE, bItemsTakenSensor == TRUE, bPresentControl == TRUE

	Step
	Customer
	Application
	XFS Command

	1.-5.
	See OK Transaction (Implicit Shutter Control and Implicit Present Control).
	
	

	6.
	
	
	As a result of the bill processing n bunchesbatches of itemsbills must be returned to the customer.

	7.
	
	
	WFS_EXEE_CIM_INPUTREFUSE

	8.
	
	
	Return bunchbatch 1 of billsitems to customer.
The Service Provider implicitly opens the shutter and implicitly presents the bunch of items.
…

WFS_SRVE_CIM_SHUTTERSTATUS​CHANGED(WFS_CIM_SHTOPEN)
WFS_SRVE_CIM_ITEMSPRESENTED

	9.
	
	Tell the customer that the items were not accepted, and to take the items. The customer should be informed that the items will be returned in multiple bunches. If there are additional bunches to deliver then this can be determined from the output parameter of the WFS_SRVE_CIM_ITEMSPRESENTED event.Tell the customer that the bills were not accepted, and to take the bills.
	

	10.
	Customer removes unrecognized moneytakes the bunch of items.
	
	WFS_SRVE_CIM_ITEMSTAKEN

The Service Provider implicitly closes the shutter.
…

WFS_SRVE_CIM_SHUTTERSTATUS​CHANGED(WFS_CIM_SHTCLOSED)

	11.
	
	
	Return bunch 2 of items to customer. The Service Provider implicitly opens the shutter and implicitly presents the bunch of items.
…

WFS_SRVE_CIM_SHUTTERSTATUS​CHANGED(WFS_CIM_SHTOPEN)
WFS_SRVE_CIM_ITEMSPRESENTED

	12.
	
	Tell the customer that the items were not accepted, and to take the items. The customer should be informed that the items will be returned in multiple bunches. If there are additional bunches to deliver then this can be determined from the output parameter of the WFS_SRVE_CIM_ITEMSPRESENTED event.Tell the customer to take the bills.
	

	13.
	Customer takes the bunch of items.Customer removes unrecognized money.
	
	WFS_SRVE_CIM_ITEMSTAKEN

The Service Provider implicitly closes the shutter.
…

WFS_SRVE_CIM_SHUTTERSTATUS​CHANGED(WFS_CIM_SHTCLOSED)

	14.
	
	
	Repeat steps 11.-13. until batches bunches 3 2 to n-1 are returned to the customer.

	15.
	
	
	Return bunchBatch n (last) of itemsnotes to customer.

The Service Provider implicitly opens the shutter and implicitly presents the bunch of items.
…

WFS_SRVE_CIM_SHUTTERSTATUS​CHANGED(WFS_CIM_ SHTOPEN)
WFS_SRVE_CIM_ITEMSPRESENTED

	16.
	
	
	* WFS_CMD_CIM_CASH_IN completes with WFS_SUCCESS.

	17.
	
	Tell the customer that the items were not accepted, and to take the items. The customer should be informed that the items will be returned in multiple bunches. If there are additional bunches to deliver then this can be determined from the output parameter of the WFS_SRVE_CIM_ITEMSPRESENTED event.Tell the customer to take the bills.
	

	18.
	Customer takes the bunch of items.Customer removes unrecognized money.
	
	

	19.
	
	
	WFS_SRVE_CIM_ITEMSTAKEN

The Service Provider implicitly closes the shutter.
…

WFS_SRVE_CIM_SHUTTERSTATUS​CHANGED(WFS_CIM_SHTCLOSED)

	20.
	
	Display the amount recognized so far.
	

	21.
	
	Ask the customer for further actions:

If the customer wants to deposit the amount:

Continue with step 21.

If the customer wants to get back all items inserted so far see table "Cancellation by Customer (Implicit Shutter Control)"
	

	22.
	
	Transport the money into the cash units of type WFS_CIM_TYPERECYCLING / WFS_CIM_TYPECASHIN RECYCLE_UNIT/CASHINBOX.
	WFS_CMD_CIM_CASH_IN_END

	23.
	
	Credit the money to the customer's account.
	

	24.
	
	End of transaction.
	

8.10 Multiple Bunches Returned During WFS_CMD_CIM_CASH_IN_ROLLBACK Multiple Rollback Notes (Implicit Shutter Control and Implicit Present Control)

The following table describes the flow of a roll back operation where items are rolled back during the transaction and the Service Provider has implicit shutter and present control implicitly controls the shutter. In this case the WFS_CMD_CIM_OPEN_SHUTTER, and WFS_CMD_CIM_CLOSE_SHUTTER SHUTTER and WFS_CMD_CIM_PRESENT_MEDIA commands are not used. Additionally, the number of items rolled back may be greater than the number of items that can be presented at the output position. Due to the complexity of this scenario, control of the shutter shutter and present control must be implicit. Therefore, there is no corresponding flow for explicit shutter and present control.
This flow covers the following cases:

· bShutterControl == TRUE, bItemsInsertedSensor == TRUE, bItemsTakenSensor == TRUE, bPresentControl == TRUE

	Step
	Customer
	Application
	XFS Command

	1.-9.
	See Cancellation by Customer (Implicit Shutter Control and Implicit Present Control).).
	
	

	10.
	
	Initiate the roll back operation.
	* WFS_CMD_CIM_CASH_IN_ROLLBACK

	11.
	
	
	The Service Provider begins the roll back.
As a result of this n batches bunches of items notes must be returned to the customer.

	12.
	
	
	Return batch bunch 1 of notes items to customer.
The Service Provider implicitly opens the shutter and implicitly presents the bunch of items.
…

WFS_SRVE_CIM_SHUTTERSTATUS​CHANGED(WFS_CIM_SHTOPEN)

WFS_SRVE_CIM_ITEMSPRESENTED

	13.
	
	Tell the customer to take the items. The customer should be informed that the items will be returned in multiple bunches. If there are additional bunches to deliver then this can be determined from the output parameter of the WFS_SRVE_CIM_ITEMSPRESENTED eventTell the customer to take the bills.
	

	14.
	Customer takes the bunch of items.Customer removes money.
	
	WFS_SRVE_CIM_ITEMSTAKEN

The Service Provider implicitly closes the shutter.
…

WFS_SRVE_CIM_SHUTTERSTATUS​CHANGED(WFS_CIM_SHTCLOSED)

	15.
	
	
	Repeat steps 11.-14. until batchesbunches 2 to n-1
are returned to the customer.

	16.
	
	
	Return batchbunch n (last) of notesitems to customer.

The Service Provider implicitly opens the shutter and implicitly presents the bunch of items.
…

WFS_SRVE_CIM_SHUTTERSTATUS​CHANGED(WFS_CIM_SHTOPEN)
WFS_SRVE_CIM_ITEMSPRESENTED

	17.
	
	
	* WFS_CMD_CIM_CASH_IN_ROLLBACK completes with WFS_SUCCESS.

	18.
	
	Tell the customer to take the bills items. The customer should be informed that this is the final bunch.
	

	19.
	Customer takes the bunch of items Customer removes money.
	
	

	20.
	
	
	WFS_SRVE_CIM_ITEMSTAKEN

The Service Provider implicitly closes the shutter.
…

WFS_SRVE_CIM_SHUTTERSTATUS​CHANGED(WFS_CIM_SHTCLOSED)

	21.
	
	End of transaction.
	

8.11 Retracting Items When Multiple Bunches Are Returned During WFS_CMD_CIM_CASH_IN (Implicit Shutter Control and Implicit Present Control)

The following table describes the flow of a cash-in transaction where items are returned back during the transaction and the Service Provider has implicit shutter and present control. In this case the WFS_CMD_CIM_OPEN_SHUTTER, WFS_CMD_CIM_CLOSE_SHUTTER and WFS_CMD_CIM_PRESENT_MEDIA commands are not used. Additionally, the number of items returned may be greater than the number of items that can be presented at the output position. Due to the complexity of this scenario, shutter and present control must be implicit. Therefore, there is no corresponding flow for explicit shutter and present control.

This flow covers the following cases:

· bShutterControl == TRUE, bItemsInsertedSensor == TRUE, bItemsTakenSensor == TRUE, bPresentControl == TRUE

	Step
	Customer
	Application
	XFS Command

	1.-5.
	See OK Transaction (Implicit Shutter Control And Implicit Present Control).
	
	

	6.
	
	
	As a result of the bill processing n bunches of items must be returned to the customer.

	7.
	
	
	WFS_EXEE_CIM_INPUTREFUSE

	8.
	
	
	Return bunch 1 of items to customer.
The Service Provider implicitly opens the shutter and implicitly presents the bunch of items.

…

WFS_SRVE_CIM_SHUTTERSTATUS​CHANGED(WFS_CIM_SHTOPEN)

WFS_SRVE_CIM_ITEMSPRESENTED

	9.
	
	Tell the customer that the items were not accepted, and to take the items. The customer should be informed that the items will be returned in multiple bunches. If there are additional bunches to deliver then this can be determined from the output parameter of the WFS_SRVE_CIM_ITEMSPRESENTED event.
	

	10.
	Customer does not take the bunch of items.
	
	

	11.
	
	After some time the application timeout waiting for the items to be taken is reached
	WFSCancelAsyncRequest is executed to end the WFS_CMD_CIM_CASH_IN command.

	12.
	
	
	* If command cancellation is supported the WFS_CMD_CIM_CASH_IN completes with WFS_ERR_CANCELED.

	13.
	
	All items are retracted.
	WFS_CMD_CIM_RETRACT

	14.
	
	End of transaction.
	

8.12 Multiple Bunches Returned During WFS_CMD_CIM_CASH_IN_ROLLBACK (Implicit Shutter Control and Implicit Present Control)

The following table describes the flow of a roll back operation where items are rolled back during the transaction and the Service Provider has implicit shutter and present control. In this case the WFS_CMD_CIM_OPEN_SHUTTER, WFS_CMD_CIM_CLOSE_SHUTTER and WFS_CMD_CIM_PRESENT_MEDIA commands are not used. Additionally, the number of items rolled back may be greater than the number of items that can be presented at the output position. Due to the complexity of this scenario, shutter and present control must be implicit. Therefore, there is no corresponding flow for explicit shutter and present control.
This flow covers the following cases:

· bShutterControl == TRUE, bItemsInsertedSensor == TRUE, bItemsTakenSensor == TRUE, bPresentControl == TRUE
	Step
	Customer
	Application
	XFS Command

	1.-9.
	See Customer Initiates Returning Of Previously Recognized Items (Implicit Shutter Control)Cancellation by Customer (Implicit Shutter Control Control and Implicit Present Control).
	
	

	10.
	
	Initiate the roll back operation.
	* WFS_CMD_CIM_CASH_IN_ROLLBACK

	11.
	
	
	The Service Provider begins the roll back.
As a result of this n bunches of items must be returned to the customer.

	12.
	
	
	Return bunch 1 of items to customer.
The Service Provider implicitly opens the shutter and implicitly presents the bunch of items.
…

WFS_SRVE_CIM_SHUTTERSTATUS​CHANGED(WFS_CIM_SHTOPEN)

WFS_SRVE_CIM_ITEMSPRESENTED

	13.
	
	Tell the customer to take the items. The customer should be informed that the items will be returned in multiple bunches. If there are additional bunches to deliver then this can be determined from the output parameter of the WFS_SRVE_CIM_ITEMSPRESENTED event.
	

	14.
	Customer takes the bunch of items.
	
	WFS_SRVE_CIM_ITEMSTAKEN

The Service Provider implicitly closes the shutter.
…

WFS_SRVE_CIM_SHUTTERSTATUS​CHANGED(WFS_CIM_SHTCLOSED)

	15.
	
	
	Repeat steps 11.-14. until bunches 2 to n-1
are returned to the customer.

	16.
	
	
	Return bunch n (last) of items to customer.

The Service Provider implicitly opens the shutter and implicitly presents the bunch of items.
…

WFS_SRVE_CIM_SHUTTERSTATUS​CHANGED(WFS_CIM_SHTOPEN)
WFS_SRVE_CIM_ITEMSPRESENTED

	17.
	
	
	* WFS_CMD_CIM_CASH_IN_ROLLBACK completes with WFS_SUCCESS.

	18.
	
	Tell the customer to take the items. The customer should be informed that this is the final bunch.
	

	19.
	Customer takes the bunch of items.
	
	

	20.
	
	
	WFS_SRVE_CIM_ITEMSTAKEN

The Service Provider implicitly closes the shutter.
…

WFS_SRVE_CIM_SHUTTERSTATUS​CHANGED(WFS_CIM_SHTCLOSED)

	21.
	
	End of transaction.
	

8.13 Retracting Items When Multiple Bunches Are Returned During WFS_CMD_CIM_CASH_IN (Implicit Shutter Control and Implicit Present Control)

The following table describes the flow of a cash-in transaction where items are returned back during the transaction and the Service Provider has implicit shutter and present control. In this case the WFS_CMD_CIM_OPEN_SHUTTER, WFS_CMD_CIM_CLOSE_SHUTTER and WFS_CMD_CIM_PRESENT_MEDIA commands are not used. Additionally, the number of items returned may be greater than the number of items that can be presented at the output position. Due to the complexity of this scenario, shutter and present control must be implicit. Therefore, there is no corresponding flow for explicit shutter and present control.

This flow covers the following cases:

· bShutterControl == TRUE, bItemsInsertedSensor == TRUE, bItemsTakenSensor == TRUE, bPresentControl == TRUE
	Step
	Customer
	Application
	XFS Command

	1.-5.
	See OK Transaction (Implicit Shutter Control And Implicit Present Control).
	
	

	6.
	
	
	As a result of the bill processing n bunches of items must be returned to the customer.

	7.
	
	
	WFS_EXEE_CIM_INPUTREFUSE

	8.
	
	
	Return bunch 1 of items to customer.
The Service Provider implicitly opens the shutter and implicitly presents the bunch of items.
…

WFS_SRVE_CIM_SHUTTERSTATUS​CHANGED(WFS_CIM_SHTOPEN)

WFS_SRVE_CIM_ITEMSPRESENTED

	9.
	
	Tell the customer that the items were not accepted, and to take the items. The customer should be informed that the items will be returned in multiple bunches. If there are additional bunches to deliver then this can be determined from the output parameter of the WFS_SRVE_CIM_ITEMSPRESENTED event.
	

	10.
	Customer does not take the bunch of items.
	
	

	11.
	
	After some time the application timeout waiting for the items to be taken is reached
	WFSCancelAsyncRequest is executed to end the WFS_CMD_CIM_CASH_IN command.

	12.
	
	
	* If command cancellation is supported the WFS_CMD_CIM_CASH_IN completes with WFS_ERR_CANCELED.

	13.
	
	All items are retracted.
	WFS_CMD_CIM_RETRACT

	14.
	
	End of transaction.
	

8.14 Bill Recognition Error (WFS_CMD_CIM_PRESENT_MEDIA Command Supported)

The following table describes the flow of a cash-in transaction when the items are rejected as unrecognized during the transaction and the WFS_CMD_CIM_PRESENT_MEDIA command is supported.

This flow covers the following case:

· bShutterControl == FALSE, bPresentControl == FALSE, bItemsTakenSensor == TRUE

	Step
	Customer
	Application
	XFS Commands and Events

	1.-76.
	See OK Transaction (Explicit Shutter Control).
	
	

	78.
	
	
	WFS_EXEE_CIM_INPUTREFUSE (WFS_CIM_INVALIDBILL)
* WFS_CMD_CIM_CASH_IN completes with WFS_SUCCESS.

	89.
	
	Present items to customer.
	* WFS_CMD_CIM_PRESENT_MEDIA initiated.

…

WFS_SRVE_CIM_SHUTTERSTATUS​CHANGED(WFS_CIM_SHTOPEN)

WFS_SRVE_CIM_ITEMSPRESENTED

	910.
	
	
	* WFS_CMD_CIM_PRESENT_MEDIA completes

	1110.
	
	Tell the customer that the items were not recognized and that the customer should take the items.
	

	121.
	Customer removes unrecognized money.
	
	

	132.
	
	
	WFS_SRVE_CIM_ITEMSTAKEN

The Service Provider implicitly closes the shutter.
…

WFS_SRVE_CIM_SHUTTERSTATUS​CHANGED(WFS_CIM_SHTCLOSED)

	143.
	
	Display the amount recognized so far.
	

	154.
	
	Ask the customer for further actions:

If the customer wants to deposit the amount:

Continue with step 15.

If the customer wants to get back all items inserted so far see table "Cancellation by Customer (Explicit Shutter Control)"
	

	165.
	
	Transport the money into the cash units of type WFS_CIM_TYPERECYCLING / WFS_CIM_TYPECASHIN.
	WFS_CMD_CIM_CASH_IN_END

	176.
	
	Credit the money to the customer's account.
	

	187.
	
	End of transaction.
	

8.16 Multiple Bunch Timeout Handling

The following sections describe flows where the Service Provider could potentially present refused items in multiple bunches during the WFS_CMD_CIM_CASH_IN command. As the WFS_CMD_CIM_CASH_IN timeout (dwTimeout parameter in WFSAsyncExecute or WFSExecute) may elapse before the last bunch is presented, resulting in a WFS_ERR_TIMEOUT in the completion event, it is recommended that the application take control by specifying a long dwTimeout and use timers to allow sufficient time for user interaction before cancelling the command. dwTimeout should be set sufficiently long to allow for any scenario; it could be set to WFS_INDEFINITE_WAIT as the command would be explicitly cancelled by the application if timers elapse.

Each flow covers the following cases:

· bShutterControl == TRUE, bItemsInsertedSensor == TRUE, bItemsTakenSensor == TRUE, bPresentControl == TRUE

No Items Inserted

In this flow, the user does not insert items within the required time, therefore the application cancels the WFS_CMD_CIM_CASH_IN command using WFS_CMD_CIM_CASH_IN_END.

	Step
	Customer
	Application
	XFS Command

	1.
	Customer selects cash-in operation.
	
	WFS_CMD_CIM_CASH_IN_START

	2.
	
	
	* WFS_CMD_CIM_CASH_IN initiated with a long timeout (for example, WFS_INDEFINITE_WAIT) using WFSAsyncExecute

The Service Provider implicitly opens the shutter.

…

WFS_SRVE_CIM_SHUTTERSTATUS​CHANGED(WFS_CIM_SHTOPEN)

WFS_EXEE_CIM_INSERTITEMS event is sent when the shutter is fully open and the device is ready to begin accepting items.

	3.
	
	Ask the customer to insert money. Application sets an insertion timer.
	

	4.
	Customer does not insert money.
	
	

	5.
	
	The insertion timer elapses
	WFSCancelAsyncRequest is executed to end the WFS_CMD_CIM_CASH_IN command.

	6.
	
	
	* If command cancellation is supported the WFS_CMD_CIM_CASH_IN completes with WFS_ERR_CANCELED.

WFS_SRVE_CIM_SHUTTERSTATUS​CHANGED(WFS_CIM_SHTCLOSED)

	7.
	
	Transaction cancelled
	WFS_CMD_CIM_CASH_IN_END

	8.
	
	End of transaction.
	

First Bunch Not Taken

In this flow, the user does not take the first returned bunch within the required time, therefore the application cancels the WFS_CMD_CIM_CASH_IN command. The same sequence can be extended to any bunch other than the last bunch as this would complete the WFS_CMD_CIM_CASH_IN command; each time a new bunch is presented a new presentation timer should be set.

	Step
	Customer
	Application
	XFS Commands and Events

	1.-3.
	See No Items Inserted
	
	

	4.
	Customer inserts money
	
	If bItemsInsertedSensor == TRUE:

WFS_SRVE_CIM_ITEMSINSERTED

The Service Provider implicitly closes the shutter.

…

WFS_SRVE_CIM_SHUTTERSTATUS​CHANGED(WFS_CIM_SHTCLOSED)

The bill recognition begins.

	5.
	
	Insertion timer cancelled
	

	6.
	
	
	As a result of the bill processing n bunches of items must be returned to the customer.

	7.
	
	
	WFS_EXEE_CIM_INPUTREFUSE

	8.
	
	
	Return bunch 1 of items to customer.
The Service Provider implicitly opens the shutter and implicitly presents the bunch of items.

…

WFS_SRVE_CIM_SHUTTERSTATUS​CHANGED(WFS_CIM_SHTOPEN)

WFS_SRVE_CIM_ITEMSPRESENTED

	9.
	
	Tell the customer that the items were not accepted, and to take the items. The customer should be informed that the items will be returned in multiple bunches. If there are additional bunches to deliver then this can be determined from the output parameter of the WFS_SRVE_CIM_ITEMSPRESENTED event.

Presentation timer set
	

	10.
	Customer does not take the items
	The presentation timer elapses
	WFSCancelAsyncRequest is executed to end the WFS_CMD_CIM_CASH_IN command.

	
	
	
	* If command cancellation is supported the WFS_CMD_CIM_CASH_IN completes with WFS_ERR_CANCELED. WFS_SRVE_CIM_SHUTTERSTATUS​CHANGED(WFS_CIM_SHTCLOSED)

	11.
	
	All items are retracted.
	WFS_CMD_CIM_RETRACT

	12.
	
	End of transaction.
	

Last Bunch Taken

In this flow, two bunches are to be returned & the user takes all of the returned bunches within the required time, therefore WFS_CMD_CIM_CASH_IN command completes normally.

	Step
	Customer
	Application
	XFS Commands and Events

	1.-9.
	See First Bunch Not Taken
	
	

	10.
	Customer takes the bunch
	
	WFS_SRVE_CIM_ITEMSTAKEN

The Service Provider implicitly closes the shutter.

…

WFS_SRVE_CIM_SHUTTERSTATUS​CHANGED(WFS_CIM_SHTCLOSED)

	11.
	
	Presentation timer cancelled
	Return bunch 2 of items to customer. The Service Provider implicitly opens the shutter and implicitly presents the bunch of items.

…

WFS_SRVE_CIM_SHUTTERSTATUS​CHANGED(WFS_CIM_SHTOPEN)

WFS_SRVE_CIM_ITEMSPRESENTED

	12.
	
	
	* WFS_CMD_CIM_CASH_IN completes with WFS_SUCCESS.

	13.
	Customer takes the bunch of items.
	
	

	14.
	
	
	WFS_SRVE_CIM_ITEMSTAKEN

The Service Provider implicitly closes the shutter.

…

WFS_SRVE_CIM_SHUTTERSTATUS​CHANGED(WFS_CIM_SHTCLOSED)

	15.
	
	Display the amount recognized so far.
	

	16.
	
	Ask the customer for further actions:

If the customer wants to deposit the amount:

Continue with step 17.

If the customer wants to get back all items inserted so far see table "Cancellation by Customer (Implicit Shutter Control)"
	

	17.
	
	Transport the money into the cash units of type WFS_CIM_TYPERECYCLING / WFS_CIM_TYPECASHIN.
	WFS_CMD_CIM_CASH_IN_END

	18.
	
	Credit the money to the customer's account.
	

	19.
	
	End of transaction.
	

Clarifications for Mixed Media Cancellation by Customer
The following table describes the flow of a Mixed Media transaction where the customer wants all the items to be returned. In this case the returned items must be explicitly presented by the application.

This flow covers the following cases:

· bItemsInsertedSensor == TRUE, bItemsTakenSensor == TRUE

· bCompound == TRUE, wMixedMode == WFS_CIM_IPMMIXEDMEDIA

· WFSCIMPOSCAPS.bPresentControl == FALSE
	Step
	Customer/ Application
	CIM Commands and Events
	IPM Commands and Events

	1.-12.
	As per Mixed Media OK Transaction.
	
	

Clarifications for Mixed Media Cancellation by Customer on Cash Part Only
The following table describes the flow of a Mixed Media transaction where the customer wants the cash items to be returned but deposit the check items. In this case the returned items are implicitly presented by the Service Provider.

This flow covers the following cases:

· bItemsInsertedSensor == TRUE, bItemsTakenSensor == TRUE

· wMixedMode == WFS_CIM_IPMMIXEDMEDIA

· WFSCIMPOSCAPS.bPresentControl == TRUE
	Step
	Customer/ Application
	CIM Commands and Events
	IPM Commands and Events

	1.-12.
	As per Mixed Media OK transaction
	
	

Clarifications for Mixed Media Multiple Refused Items
The following table describes the flow of a Mixed Media transaction where items are rejected during the transaction. Additionally, the number of items refused may be greater than the number of items that can be presented at the output position. In this case the returned items must be explicitly presented by the application.

This flow covers the following cases:

· bShutterControl == TRUE, bItemsInsertedSensor == TRUE, bItemsTakenSensor == TRUE

· bCompound == TRUE, wMixedMode == WFS_CIM_IPMMIXEDMEDIA

· WFSCIMPOSCAPS.bPresentControl == FALSE
	Step
	Application/ Customer
	CIM Commands and Events
	IPM Commands and Events

	1.
	Customer selects Mixed Media transaction.
	WFS_CMD_CIM_CASH_IN_START
	

	2.
	
	* WFS_CMD_CIM_CASH_IN initiated
(The shutter is not opened until WFS_CMD_IPM_MEDIA_IN is called.)
…

WFS_SRVE_CIM_SHUTTERSTATUSCHANGED(WFS_CIM_SHTOPEN)
	* WFS_CMD_IPM_MEDIA_IN initiated
Service Provider opens the input shutter.
…

WFS_SRVE_CIM_SHUTTERSTATUSCHANGED(WFS_CIM_SHTOPEN)

	3.
	
	WFS_EXEE_CIM_INSERTITEMS event is sent when the shutter is fully open and the device is ready to begin accepting items.
	WFS_EXEE_IPM_NOMEDIA

This event specifies that media must be inserted into the device in order for the execute command to proceed.

	4.
	Ask the customer to insert items.
	
	

	5.
	Customer inserts items.
	
	

	6.
	
	WFS_SRVE_CIM_ITEMSINSERTED
	WFS_EXEE_IPM_MEDIAINSERTED

	7.
	
	The Service Provider closes the input shutter and the device begins processing the inserted items.
…

WFS_SRVE_CIM_SHUTTERSTATUSCHANGED(WFS_CIM_SHTCLOSED)
	…

WFS_SRVE_IPM_SHUTTERSTATUS​CHANGED(WFS_IPM_SHTCLOSED)

Send one WFS_EXEE_IPM_MEDIADATA event for every check item identified.

	8.
	Items are refused.
	WFS_EXEE_CIM_INPUTREFUSE event sent with appropriate lpusReason parameter.

Items that are not bills or checks are rejected with WFS_CIM_INVALIDBILL.
	WFS_EXEE_IPM_MEDIAREFUSED

	9.
	
	* WFS_CMD_CIM_CASH_IN completes.
	* WFS_CMD_IPM_MEDIA_IN completes.

	10.
	Application chooses to return refused items now.
	* WFS_CMD_CIM_PRESENT_MEDIA initiated (No physical action may take place until the WFS_CMD_IPM_PRESENT_MEDIA command.)
	* WFS_CMD_IPM_PRESENT_MEDIA initiated

	11.
	Each bunch of items presented.
	…

WFS_SRVE_CIM_SHUTTERSTATUSCHANGED(WFS_CIM_SHTOPEN)

WFS_SRVE_CIM_ITEMSPRESENTED
	…

WFS_SRVE_IPM_SHUTTERSTATUS​CHANGED(WFS_IPM_SHTOPEN
WFS_EXEE_IPM_MEDIAPRESENTED

	12.
	All but last bunch of items taken.
	WFS_SRVE_CIM_ITEMSTAKEN
	WFS_SRVE_IPM_MEDIATAKEN

	13.
	
	* WFS_CMD_CIM_PRESENT_MEDIA completes.
	* WFS_CMD_IPM_PRESENT_MEDIA completes.

	14.
	Last bunch of items taken.
	WFS_SRVE_CIM_ITEMSTAKEN
	WFS_SRVE_IPM_MEDIATAKEN

	15.
	Transaction continues from step 123. in the Mixed Media OK transaction.
	
	

Card Dispenser

Class Name

CRD
No clarifications available.

Bar Code Reader

Class Name

BCR

Clarifications for C - Header File
..

/* Values of WFSBCRSTATUS.dwGuidLights [...]

 WFSBCRCAPS.dwGuidLights [...],

 WFSBCRSETGUIDLIGHT.wGuidLight */

#define WFS_BCR_GUIDANCE_NOT_AVAILABLE (0x00000000)

#define WFS_BCR_GUIDANCE_OFF (0x00000001)
/* The following value (WFS_BCR_GUIDANCE_ON) should NOT be used */

#define WFS_BCR_GUIDANCE_ON (0x00000002)

#define WFS_BCR_GUIDANCE_SLOW_FLASH (0x00000004)

#define WFS_BCR_GUIDANCE_MEDIUM_FLASH (0x00000008)

#define WFS_BCR_GUIDANCE_QUICK_FLASH (0x00000010)

#define WFS_BCR_GUIDANCE_CONTINUOUS (0x00000080)

#define WFS_BCR_GUIDANCE_RED (0x00000100)

#define WFS_BCR_GUIDANCE_GREEN (0x00000200)

#define WFS_BCR_GUIDANCE_YELLOW (0x00000400)

#define WFS_BCR_GUIDANCE_BLUE (0x00000800)

#define WFS_BCR_GUIDANCE_CYAN (0x00001000)

#define WFS_BCR_GUIDANCE_MAGENTA (0x00002000)

#define WFS_BCR_GUIDANCE_WHITE (0x00004000)
#define WFS_BCR_GUIDANCE_ENTRY (0x00100000)

#define WFS_BCR_GUIDANCE_EXIT (0x00200000)

Item Processing Module

Class Name

IPM

Clarifications for WFS_INF_IPM_STATUS

wStacker
Supplies the state of the stacker (also known as an escrow). The stacker is where the media items are held while the application decides what to do with them. This field can be one of the following values:

Value
Meaning

WFS_IPM_STACKERFULL
The stacker is full. This state is set if the number of media items on the stacker has reached the WFSIPMCAPS.usMaxMediaOnStacker field of the Capabilities or some physical limit has been reached.
lppPositions
…
wTransport
Supplies the state of the transport mechanism as one of the following values. The transport is defined as any area leading to or from the position:
Clarifications for WFS_INF_IPM_MEDIA_BIN_CAPABILITIES

bItemSensors
A capability that specifies whether or not the threshold event, WFS_USRE_IPM_MEDIABINTHRESHOLD MEDIABININFOCHANGED (WFS_IPM_STATMBEMPTY), can be generated based on hardware sensors in the device. If this value is TRUE then threshold events can be generated and WFSIPMMEDIABIN.usStatus can repo
 Clarifications for WFS_CMD_IPM_MEDIA_IN

usMaxMediaOnStacker
Maximum number of media items allowed on the stacker during the media-in transaction. This value is used to limit the total number of media items on the stacker. When this limit is reached all further media items will be refused and a WFS_EXEE_IPM_MEDIAREFUSED event will be generated reporting WFS_IPM_REFUSED_STACKERFULL. This value cannot exceed the value reported in the WFSIPMCAPS.usMaxMediaOnStacker field of the Capabilities or the Service Provider will return a WFS_ERR_INVALID_DATA error. If this value is zero then the maximum number of items allowed on the stacker reported in the WFSIPMCAPS.usMaxMediaOnStacker field of the Capabilities will be used. This value must be the same during all calls to the WFM_CMD_IPM_MEDIA_IN command within a single media-in transaction or the Service Provider will return a WFS_ERR_INVALID_DATA error. This value is ignored on devices without stackers.

Clarifications for WFS_SRVE_IPM_MEDIATAKEN

Comments
Note that since this event can occurs after the completion of a function that includes a media eject, it is not an execute event.

page
- 21 of 67 -

_979057745.vsd

